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From strings to supergravity
n Landscape of vacua of string theories is a landscape 

of supergravities
n The basic string theories have a supergravity as field 

theory approximation
n Also after the choice of a compact manifold one is 

left with an effective lower dimensional supergravity
with number of supersymmetries determined by the 
Killing spinors of the compact manifold

n Fluxes and non-perturbative effects lead to gauged
supergravities

n Not every supergravity is interpretable in terms of 
strings and branes (yet).



This talk
n Overview of possibilities. Where are we ?
n Structure of supergravity theories
n Which data completely determine a supergravity

theory ?
n The description of supergravities can be simplified.

(rigid supersymmetry is so much simpler and transparant due 
to superspace description; the conformal approach allows one 
to re-interpret supergravity as a covariantized rigid theory)

n Examples: 
stable de Sitter vacua in 5 dimensions



Plan
1. The classification of ‘non-gauged’ supergravity

theories 
2. Gauged supergravity theories
3. Simplification by a parent rigid susy theory 

(using superconformal ideas)
4. Example: Stable de Sitter vacua from

supergravity in 5 dimensions
5. Final remarks



1. The classification of 
‘non-gauged’ supergravity theories

n Restrictions in the classification
n Supergravities by dimension and extension
n Structure of the action
n R-symmetry
n Kinetic terms : 

Geometry of the scalar manifolds



Restrictions for the classification

n Theories with an action
- Other possibility: field equations determined by the 

supersymmetry algebra, but these cannot be obtained 
from a covariant action

- IIB in 10 dimensions is such an example, but we 
include this for the systematics

n At most 2 spacetime derivatives in any term
n Signature of spacetime is Minkowski
n Positive definite kinetic terms for physical fields
n Poincarè-like algebra



The map: dimensions and # of supersymmetries
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Structure of the action
n (D=4) with fields of spin 2, 1, 0, 3/2, 1/2

n Kinetic terms determined by some matrices. 
They describe the geometry

n Gauged supergravity:
• What are the covariant derivatives ? 
• The field strenghts can be non-abelian.
• Potential V ?

Are all antisymmetric
tensors equivalent 
to scalars ?



What is determined / to be determined ?

n 32 ≥ Q > 8: Once the field content is determined: 
kinetic terms determined. 
Gauge group and its action on scalars 
(covariantization) to be determined. 
Potential depends on this gauging

n Q = 8: kinetic terms to be determined 
Gauge group and its action on the scalars to be 
determined. 
Potential depends on this gauging

n Q = 4: (d=4, N=1): potential depends moreover on 
a superpotential function W.



R-symmetry

n Supersymmetries are representations of the 
Lorentz group

n Jacobi identities [TTQ] , [TQQ], and reality
conditions restrict possibilities

n They may rotate under an automorphism
group



R-symmetry groups
in different dimensions

n Majorana spinors in odd dimensions: 
SO(N) (d=3,9)

n Majorana spinors in even dimensions: 
U(N) (d=4,8)

n Majorana-Weyl spinors:  
SO(NL) � SO(NR) (d=2,10)

n Symplectic spinors: 
USp(N) (d=5,7)

n Symplectic Majorana-Weyl spinors: 
USp(NL) � USp(NR) (d=6)



n With > 8 susys: symmetric spaces

The map of geometries

n 4 susys: Kähler: U(1) part in isotropy group

n 8 susys: very special, 
special Kähler and 
quaternionic-Kähler SU(2)=USp(2)

part in holonomy
group

U(1) part in 
holonomy group



Kähler, hyper-Kähler, 
quaternionic-Kähler

n Complex structure Ji
j (with J J = -1)   or 

hypercomplex structure with J1J2=J3

n If there is also a hermitian metric and ����kJi
j = 0 : 

‘Kähler manifold’. 
n Hypercomplex structure with metric and

‘hyper-Kähler’
n If there is an SU(2) connection such that

‘quaternionic-Kähler’

i labels the scalar fields φ i

HolonomyHolonomy group group U(U(nn))

HolonomyHolonomy group USp(2n)group USp(2n)

HolonomyHolonomy group USp(2n)group USp(2n)��������SU(2)SU(2)
(for positive definite metric)(for positive definite metric)



2. Gauged supergravity theories

n Gauging and potential  
(see: fluxes for stabilisation of moduli)

n Isometries and their embedding in the gauge 
group 

n Gauged R-symmetry
n The potential



Gauged supergravity for applications

n Essential progress: stabilisation of moduli
by supergravity potentials

n N=1: superpotential produced by fluxes
- e.g. Gukov-Vafa-Witten result for CY in IIB

- Analogous result in heterotic string
- Or understand from



Structure of the action
n (D=4) with fields of spin 2, 1, 0, 3/2, 1/2

n Kinetic terms determined by some matrices. 
They describe the geometry

n Gauged supergravity:
• What are the covariant derivatives ? 
• The field strenghts can be non-abelian.
• Potential V ?

If these (from a higher-dimensional 
theory)  get scalar values, these 
terms produce new contributions to 
the potential V.



Gauged supergravity for applications

n Essential progress: stabilisation of moduli
by supergravity potentials

n N=1: superpotential produced by fluxes
n or from non-perturbative effects or both

n higher N supergravity or in higher dimensions : 
Potential is generated only from gaugings.  
N=1 is special case: potential appears also from 
superpotential W



Gauge group

n Number of generators = number of vectors.
n This includes as well vectors in supergravity

multiplet and those in vector multiplets
(cannot be distinguished in general)

n The gauge group is arbitrary, but to have 
positive kinetic terms gives restrictions on
possible non-compact gauge groups.



Isometries of the scalar manifold
n Diffeomorphisms φ �(φ) of the scalar manifold ����

isometries
(symmetries of kinetic energy ds2=gijdφ i dφ j)

n A subset of the isometries can be gauged. 
n If φ i   are all the scalar fields,   

Aµ
I all the vectors, 

and kΛ
i are all the Killing vectors,  (isom.: δφ i= ε Λ kΛ

i)
the ‘embedding matrix’ tI

Λ determines
the subset of isometries kI

i = tI
Λ kΛ

i that are gauged. 
n These should satisfy the gauge algebra of the vectors. 



Isometries, complex structures and 
R-symmetry

n When the manifold has complex structures, 
the isometries should respect them. 

n This implies e.g. that in hyper-Kähler
manifolds the matrix Di kI

j commutes with
n For a general isometry in quaternionic-Kähler:

n Moment map of an isometry is its SU(2) part 
in the decomposition in SU(2)����USp(2r)



Example: Independent quantities of 
an N=1, D=4 supergravity

n chiral multiplet kinetic terms: Kähler potential K
n kinetic holomorphic function

n chiral multiplet: representation of gauge group:
- should act as isometries of Kähler metric
- embedding in isometry group such that algebra is satisfied

n (holomorphic) superpotential W(z)      only for N=1 !!
n for any U(1) a Fayet-Iliopoulos (FI) constant ξξξξξξξξΙΙΙΙΙΙΙΙ

n gauge group such that is in (adj x adj)symm



Gauged R-symmetry

In the susy transformation of the gravitino appears a 
gauge vector for the R-transformation: e.g. N=1:

In supergravity:

n Holonomy group of scalar manifold includes R-symmetry
as factor: first term is pull-back of the connection on the 
scalar manifold

n The amount in which the gauge symmetry contributes
to the R-symmetry is determined by the moment map

composite gauge field for U(1) 
‘R-symmetry’ ���������eiαααα γγγγ

5 �



N=1

Potential
n General fact in supergravity (“Ward identity”) 

V = �fermions (δ fermion) (metric) (δ fermion)

F-term D-term

δ gravitino δ gauginoδ chiral fermions

depends on
superpotential W

depends on gauge
transformations + arbitrary FI 
constants ξξξξξξξξΙΙΙΙΙΙΙΙ (for U(1) factors) 

n In higher N: all determined by gauge transformations
n E.g. N=2: complex F and real D are 

combined in triplet moment map P



3. Simplification by a parent rigid 
supersymmetric theory

n Superconformal idea
n The geometries of supergravity by gauge 

fixing those of rigid supersymmetry
n Isometries and R-symmetry
n The potential



Rigid supersymmetry
n Difference: the concept of multiplets is clear 

in susy, they are mixed in supergravity
n Superfields are an easy conceptual tool

n Gravity can be obtained by starting with 
conformal symmetry and gauge fixing.

n Before gauge fixing: everything looks like 
in rigid supersymmetry + covariantizations



Poincaré gravity by gauge fixing
• scalar field (compensator)

conformal gravity: 

See: negative signature of scalars ! 
Thus: if more physical scalars: start with (– ++...+)

n First action is conformal invariant, 
n Scalar field had scale transformation δφ (x)=ΛD(x)φ(x)

φ choice determines MP

dilatational gauge fixing



Very special real
manifolds

n VSR : very special real manifold: an embedding
of a n-dimensional manifold
in an (n+1)-dimensional manifold with metric
CIJK hI dhJ dhK by constraint CIJK hIhJhK = const.

n The cubic homogeneous structure is the 
conformal symmetry of the theory

n The constraint is the gauge fixing condition



Geometries from supersymmetric 
theories with 8 real supercharges

d=5, N=2 
vector multiplets

local
(projective)

(projective) 
very special
real 

rigid
(affine)
+conform

affine 
very special
real

Kähler
manifolds

affine 
(special) Kähler

hyper-
multiplets

hyper-Kähler

gauge fix
D

(projective)
(special) Kähler

gauge fix
D, U(1)

quaternionic-
Kähler

gauge fix
D, SU(2)



Superconformal formulation
for N=1, d=4

n superconformal group includes dilatations and 
U(1)   R-symmetry

n Super-Poincaré gravity = 
Weyl multiplet: includes (auxiliary) U(1) gauge field
+ compensating chiral multiplet

n Corresponding scalar is called ‘conformon’: Y
n Fixing value gives rise to MP :

n U(1) is gauge fixed by fixing the imaginary
part of Y,       e.g. Y=Y*



Superconformal methods for N=1 d=4
(n+1) – dimensional Kähler manifold
with conformal symmetry

(a closed homothetic Killing vector ki)
(implies a U(1) generated by kj Jj

i )

Gauge fix dilatations and U(1)

n-dimensional Hodge-Kähler manifold



Quaternionic-Kähler
from hyper-Kähler

4(r+1) – dimensional hyper-Kähler manifold
with conformal symmetry

(a closed homothetic Killing vector ki)
(implies an SU(2) generated by )

Gauge fix dilatations and SU(2)
4r – dimensional quaternionic-Kähler manifold

(also for hypercomplex ���� quaternionic)

E. Bergshoeff, S. Cucu, T. de Wit, J. Gheerardyn, S. Vandoren, AVP, 
‘The map between conformal hypercomplex/hyper-Kähler and 
quaternionic(-Kähler) geometry’, 0411209

B. de Wit, S.Vandoren, series of papers, e.g. 9909228

USp(2r,2)
����

USp(2r) 
��������SU(2)

USp(2r) 
��������SU(2)



R-symmetry in conformal approach
n R-group is part of the superconformal group. 
n Should then be gauge-fixed

n Isometries act also on compensating scalars
n The moment map is the transformation of the 

compensating scalars under the isometry
n In conformal formulation: R ��������Isom
n Gauge fixing of R :            R ��������Isom ��������Isom. 

But the remaining isometries have contribution 
from R-symmetry



Potential (in example d=4, N=1)

n F-term potential
is unified

by including
the extra chiral
multiplet: 

n D-term potential: is unified as FI is the gauge
transformation of the compensating scalar: 



4. Example: Stable de Sitter vacua
from 5 d supergravity

n A few models have been found in d=5, N=2 (Q=8) 
that allow de Sitter vacua where the potential has a 
minimum at the critical point B. Cosemans, G. Smet, 0502202

P. Frè, M. Trigiante, AVP, 0205119

n A few years ago similar models where found for d=4, 
N=2

n These are exceptional: apart from these constructions
all de Sitter extrema in theories with 8 or more 
supersymmetries are at most saddle points of the 
potential



Main ingredients

n Tensor multiplets. 
Abelian case: tensors (2-forms) dual to vector 
multiplets (in d=5). 
However, they allow gaugings that are not
possible for vector multiplets

n Non-compact gauging: 
SO(1,1) gauge group involved

n Fayet-Iliopoulos terms: the compensating
hypermultiplet transforms under the gauge group.



The model
n 1 vector multiplet (+ 1 compensating)
n 2 tensor multiplets
n No hypermultiplet ( 1 compensating)

This is a minimal version of the models in B. Cosemans, G. Smet, 0502202

n 3 physical scalars form very special real space

n Vectors (A0, A3) and tensors (B1,B2) in one ‘very
special real’ structure’ determined by

n Embedded in 2 vector mult. + 2 tensor mult. 
with conformal symmetry



Gauging
n Vector A0 and A3 can be used for gauging: 

2 Abelian factors.

- FI term = gauging of SO(2) subgroup of the SU(2) in 
compensating hypermultiplet. Here the embedding matrix is 
the moment map
Potential: square of transformations of gravitini and gaugini: 
simpler at once in extended space:

n Isometries that are gauged: 
- rotation between tensors B1 and B2 (scalars h1 and h2) : 

isometry in part                                   SO(1,1)���� SO(2,1).
This is only possible because they are dualized to tensors. 
As vectors they should have been in adjoint representation.
Tensor contribution to potential: square of transformation of 
tensorinos



Vacuum
n The constraint

solved for h0 in terms of scalars φ i= h i (i=1,2,3).

n Extremum:

n Second derivatives, diagonalized:

n BEH effect: Spontaneously broken SO(1,1). 
Vector becomes massive. Goldstone boson absorbed.

n Potential



5. Final remarks

n A classification of the landscape of all supergravities is 
not yet completed, but basic principles are known. 

n With the restrictions that we have imposed, the possible
gaugings still have to be discussed. 
Which gaugings produce positive definite kinetic terms ?

n Dualities between multiplets do not hold for gauged
supergravities. What is a complete set of theories ?

n It may be good to construct an inventory of known 
theories: actions – transformation laws – field equations

n More ambitious: solutions, relations by compactification


