The geometry and landscape of Supergravity

Antoine Van Proeyen K.U. Leuven

From strings to supergravity

- n Landscape of vacua of string theories is a landscape of supergravities
- n The basic string theories have a supergravity as field theory approximation
- n Also after the choice of a compact manifold one is left with an effective lower dimensional supergravity with number of supersymmetries determined by the Killing spinors of the compact manifold
- n Fluxes and non-perturbative effects lead to gauged supergravities
- Not every supergravity is interpretable in terms of strings and branes (yet).

This talk

- n Overview of possibilities. Where are we?
- n Structure of supergravity theories
- which data completely determine a supergravity theory?
- n The description of supergravities can be simplified. (rigid supersymmetry is so much simpler and transparant due to superspace description; the conformal approach allows one to re-interpret supergravity as a covariantized rigid theory)
- n Examples:stable de Sitter vacua in 5 dimensions

Plan

- 1. The classification of 'non-gauged' supergravity theories
- 2. Gauged supergravity theories
- 3. Simplification by a parent rigid susy theory (using superconformal ideas)
- 4. Example: Stable de Sitter vacua from supergravity in 5 dimensions
- 5. Final remarks

1. The classification of 'non-gauged' supergravity theories

- n Restrictions in the classification
- n Supergravities by dimension and extension
- n Structure of the action
- n R-symmetry
- n Kinetic terms :Geometry of the scalar manifolds

Restrictions for the classification

- n Theories with an action
 - Other possibility: field equations determined by the supersymmetry algebra, but these cannot be obtained from a covariant action
 - IIB in 10 dimensions is such an example, but we include this for the systematics
- n At most 2 spacetime derivatives in any term
- n Signature of spacetime is Minkowski
- n Positive definite kinetic terms for physical fields
- n Poincarè-like algebra

The map: dimensions and # of supersymmetries

d	susy	3	2	24	20	1	6	12	8	4
11	M	M						S	ee discus	sion in
10	MW	IIA	IIB			I		A	VP, 0301	.005
9	M	N:	=2			□ N=1				
8	M	N:	=2			□ N=1				
7	S	N:	= 4			■N=2				
6	SW	(2,	,2)	(2,1)		(1,1)	(2,0)		(1,0)	
5	S	N:	=8	N=6		N:	=4		№ N=2	
4	M	N:	=8	N=6	N=5	N:	=4	N=	3 N=2	Ø N=1
SU			JGRA		SUGRA/SUSY		SUGR	A SUGR	A/SUSY	

vector multiplets

tensor multiplet

Structure of the action

n (D=4) with fields of spin 2, 1, 0, 3/2, 1/2 e_{μ}^{a} , A_{μ}^{I} , ϕ^{u} , ψ_{μ} , λ^{A}

$$e^{-1}\mathcal{L} = \frac{1}{2}R$$

$$+\frac{1}{4}(\operatorname{Im} \mathcal{N}_{IJ})\mathcal{F}^{I}_{\mu\nu}\mathcal{F}^{\mu\nu J} - \frac{1}{8}(\operatorname{Re} \mathcal{N}_{IJ})\varepsilon^{\mu\nu\rho\sigma}\mathcal{F}^{I}_{\mu\nu}\mathcal{F}^{J}_{\rho\sigma}$$

$$-\frac{1}{2}g_{uv}D_{\mu}\phi^{u}D^{\mu}\phi^{v} - V$$

$$\left\{-\bar{\psi}_{\mu i}\gamma^{\mu\nu\rho}D_{\nu}\psi_{\rho}{}^{i} - \frac{1}{2}g_{A}{}^{B}\bar{\lambda}^{A}\not{\!\!\!D}\lambda_{B} + \text{h.c.}\right\} + \dots$$

- n Kinetic terms determined by some matrices.

 They describe the geometry
- n Gauged supergravity:
 - What are the covariant derivatives?
 - The field strenghts can be non-abelian.
 - Potential V?

Are all antisymmetric tensors equivalent to scalars?

What is determined / to be determined?

- n 32 ≥ Q > 8: Once the field content is determined: kinetic terms determined.
 Gauge group and its action on scalars (covariantization) to be determined.
 Potential depends on this gauging
- n Q = 8: kinetic terms to be determined
 Gauge group and its action on the scalars to be determined.
 - Potential depends on this gauging
- n Q = 4: (d=4, N=1): potential depends moreover on a superpotential function W.

R-symmetry

- Supersymmetries are representations of the Lorentz group $[M_{\mu\nu}, Q^i_{\alpha}] = -\frac{1}{4} (\gamma_{\mu\nu})_{\alpha}^{\beta} Q^i_{\beta}$
- They may rotate under an automorphism group $[T_A, Q^i_{\alpha}] = (U_A)^i{}_j Q^j_{\alpha}$
- n Jacobi identities [TTQ], [TQQ], and reality conditions restrict possibilities

R-symmetry groups in different dimensions

n Majorana spinors in odd dimensions:

$$SO(N) \qquad (d=3,9)$$

n Majorana spinors in even dimensions:

$$U(N) \qquad (d=4,8)$$

n Majorana-Weyl spinors:

$$SO(N_L) \times SO(N_R)$$
 (d=2,10)

n Symplectic spinors:

$$USp(N) (d=5,7)$$

n Symplectic Majorana-Weyl spinors:

$$USp(N_L) \times USp(N_R)$$
 (d=6)

The map of geometries

n With > 8 susys: symmetric spaces

d	32	24	20	16	12
9	$\frac{S\ell(2)}{SO(2)}\otimesO(1,1)$			$rac{\mathrm{O}(1,n)}{\mathrm{O}(n)}\otimes\mathrm{O}(1,1)$	
8	$\frac{S\ell(3)}{SU(2)}\otimes\frac{S\ell(2)}{U(1)}$			$rac{O(2,n)}{U(1) imesO(n)}\otimesO(1,1)$	
7	S ℓ(5) USp(4)			$rac{O(3,n)}{USp(2) imesO(n)}\otimesO(1,1)$	
6	$\frac{O(5,5)}{USp(4) \times USp(4)}$	SO(5,1) SO(5)		$\left egin{array}{c} rac{O(4,n)}{O(n) imes SO(4)} \otimes O(1,1) \end{array} ight \left egin{array}{c} rac{O(5,n)}{O(n) imes USp(4)} \end{array} ight $	
5	E ₆ USp(8)	SU*(6) USp(6)		$rac{O(5,n)}{USp(4) imesO(n)}\otimesO(1,1)$	
4	E ₇ SU(8)	SO*(12) U(6)	SU(1,5) U(5)	$\frac{SU(1,1)}{U(1)} imes \frac{SO(6,n)}{SU(4) imes SO(n)}$	$\frac{SU(3,n)}{U(3)\timesSU(n)}$

8 susys: very special,special Kähler andquaternionic-Kähler

d = 6	d = 5	d = 4
$oxed{rac{O(1,n)}{O(n)}}$	$oxed{VSR}$	SK
$\times QK$	$\times QK$	$\times QK$

n 4 susys: Kähler: U(1) part in isotropy group

U(1) part in holonomy group

SU(2)=USp(2) part in holonomy group

Kähler, hyper-Kähler, quaternionic-Kähler

- n Complex structure J_i^j (with JJ = -1) or hypercomplex structure with $J^lJ^2=J^3$
- n If there is also a hermitian metric and $\nabla_k J_i^{\ j} = 0$: 'Kähler manifold'. Holonomy group U(n)
- n Hypercomplex structure with metric and $\nabla_k \vec{J_i}^j = 0$ 'hyper-Kähler' Holonomy group USp(2n)
- n If there is an SU(2) connection such that

$$\nabla_k \vec{J_i}^j + 2\vec{\omega}_k \times \vec{J_i}^j = 0$$

'quaternionic-Kähler' Holonomy group USp(2n)×SU(2)

(for positive definite metric)

i labels the scalar fields ϕ^i

2. Gauged supergravity theories

- n Gauging and potential (see: fluxes for stabilisation of moduli)
- n Isometries and their embedding in the gauge group
- n Gauged R-symmetry
- n The potential

Gauged supergravity for applications

- n Essential progress: stabilisation of moduli by supergravity potentials
- n N=1: superpotential produced by fluxes
 - e.g. Gukov-Vafa-Witten result for CY in IIB

$$W = \int_{\mathsf{CY}_6} G \wedge \Omega$$

- Analogous result in heterotic string
- Or understand from

Structure of the action

(D=4) with fields of spin 2, 1, 0, 3/2, 1/2 $[e^a_\mu,\,A^I_\mu,\,\phi^u,\,\psi_\mu,\,\lambda^A]$

$$e^{-1}\mathcal{L} = \frac{1}{2}R$$

$$+ \frac{1}{4} (\operatorname{Im} \mathcal{N}_{IJ}) \mathcal{F}_{\mu\nu}^{I} \mathcal{F}^{\mu\nu J} - \frac{1}{8} (\operatorname{Re} \mathcal{N}_{IJ}) \varepsilon^{\mu\nu\rho\sigma} \mathcal{F}_{\mu\nu}^{I} \mathcal{F}_{\rho\sigma}^{J}$$

$$- \frac{1}{2} g_{uv} D_{\mu} \phi^{u} D^{\mu} \phi^{v} - V$$

$$\left\{ - \bar{\psi}_{\mu i} \gamma^{\mu\nu\rho} D_{\nu} \psi_{\rho}{}^{i} - \frac{1}{2} g_{A}{}^{B} \bar{\lambda}^{A} \not D \lambda_{B} + \text{h.c.} \right\} + \dots$$

- They describe t
- Gauged superg
- n Kinetic terms d If these (from a higher-dimensional theory) get scalar values, these terms produce new contributions to the potential V.
 - What are the covariant derivatives:
 - The field strenghts can be non-abelian.
 - Potential V?

Gauged supergravity for applications

- n Essential progress: stabilisation of moduli by supergravity potentials
- n N=1: superpotential produced by fluxes
- n or from non-perturbative effects or both

n higher *N* supergravity or in higher dimensions:

Potential is generated only from gaugings.

N=1 is special case: potential appears also from superpotential *W*

Gauge group

- Number of generators = number of vectors.
- n This includes as well vectors in supergravity multiplet and those in vector multiplets (cannot be distinguished in general)
- n The gauge group is arbitrary, but to have positive kinetic terms gives restrictions on possible non-compact gauge groups.

Isometries of the scalar manifold

- n Diffeomorphisms $\phi'(\phi)$ of the scalar manifold \supset isometries
 - (symmetries of kinetic energy $ds^2 = g_{ij} d\phi^i d\phi^j$)
- n A subset of the isometries can be gauged.
- If ϕ^i are all the scalar fields, $A_{\mu}{}^I$ all the vectors, and $k_{\Lambda}{}^i$ are all the Killing vectors, (isom.: $\delta\phi^i = \varepsilon^{\Lambda} k_{\Lambda}{}^i$) the 'embedding matrix' $t_I{}^{\Lambda}$ determines the subset of isometries $k_I{}^i = t_I{}^{\Lambda} k_{\Lambda}{}^i$ that are gauged.
- n These should satisfy the gauge algebra of the vectors.

Isometries, complex structures and R-symmetry

- n When the manifold has complex structures, the isometries should respect them.
- n This implies e.g. that in hyper-Kähler manifolds the matrix $D_i k_I^j$ commutes with \vec{J}_i^j
- For a general isometry in quaternionic-Kähler: $D_i k_I^j = \vec{J}_i^{\ j} \cdot \vec{P}_I + \text{part related to USp}(2r)$
- n Moment map of an isometry is its SU(2) part in the decomposition in SU(2)×USp(2r)

Example: Independent quantities of an N=1, D=4 supergravity

$$e^{-1}\mathcal{L}_{\text{bos}} = -\frac{1}{2}M_P^2R - \frac{1}{4}(\text{Im}\,\mathcal{N}_{IJ})F_{\mu\nu}^IF^{\mu\nu\,J} - \frac{1}{8}(\text{Im}\,\mathcal{N}_{IJ})e^{-1}\varepsilon^{\mu\nu\rho\sigma}F_{\mu\nu}^I\tilde{F}_{\rho\sigma}^J - g_{\alpha\bar{\beta}}(D_{\mu}z^{\alpha})(D^{\mu}\bar{z}^{\bar{\beta}}) - V(z,\bar{z})$$

- n kinetic holomorphic function $\mathcal{N}_{IJ}(z) = i f_{IJ}(z)$
- n chiral multiplet kinetic terms: Kähler potential K

$$g_{lphaar{eta}} = \partial_{lpha}\partial_{ar{eta}}K(z,ar{z})$$

- n gauge group such that N_{IJ} is in $(adj \times adj)_{symm}$
- n chiral multiplet: representation of gauge group:
 - should act as isometries of Kähler metric
 - embedding in isometry group such that algebra is satisfied
- n (holomorphic) superpotential W(z) only for N=1!!
- n for any U(1) a Fayet-Iliopoulos (FI) constant ξ_I

Gauged R-symmetry

In supergravity:

In the susy transformation of the gravitino appears a gauge vector for the R-transformation: e.g. *N*=1:

$$\delta \psi_{\mu L} = \left(\partial_{\mu} + \frac{1}{4} \omega_{\mu}^{ab}(e) \gamma_{ab} + \frac{1}{2} i \mathcal{V}_{\mu} \right) \epsilon_{L} + \frac{1}{2} M_{P}^{-2} \gamma_{\mu} F_{0} \epsilon_{R}$$

$$\mathcal{V}_{\mu} = (\partial_{\mu}\phi^{i})\omega_{i} + \kappa^{2}A_{\mu}^{I}\mathcal{P}_{I}$$

$$\omega_{i} \equiv J_{i}^{j}\partial_{j}K$$

composite gauge field for U(1)

'R-symmetry' $\epsilon \rightarrow e^{i\alpha \gamma} {}_{5} \epsilon$

- n Holonomy group of scalar manifold includes R-symmetry as factor: first term is pull-back of the connection on the scalar manifold
- The amount in which the gauge symmetry contributes to the R-symmetry is determined by the moment map

Potential

n General fact in supergravity ("Ward identity")

$$V = \sum_{\text{fermions}} (\delta \text{ fermion}) \text{ (metric) } (\delta \text{ fermion})$$

N=1
$$\delta$$
 gravitino δ chiral fermions δ gaugino $V = -3M_P^{-2}F_0\bar{F}_0 + F_\alpha g^{\alpha\bar{\beta}}\bar{F}_{\bar{\beta}} + \frac{1}{2}D^I(\text{Im}\mathcal{N}_{IJ})D^J$

F-term

D-term

depends on superpotential *W*

depends on gauge transformations + arbitrary FI constants ξ_{ℓ} (for U(1) factors)

- n In higher N: all determined by gauge transformations
- n E.g. N=2: complex F and real D are combined in triplet moment map P

3. Simplification by a parent rigid supersymmetric theory

- n Superconformal idea
- n The geometries of supergravity by gauge fixing those of rigid supersymmetry
- n Isometries and R-symmetry
- n The potential

Rigid supersymmetry

- n Difference: the concept of multiplets is clear in susy, they are mixed in supergravity
- n Superfields are an easy conceptual tool
- n Gravity can be obtained by starting with conformal symmetry and gauge fixing.
- n Before gauge fixing: everything looks like
 in rigid supersymmetry + covariantizations

Poincaré gravity by gauge fixing

• scalar field (compensator) $\mathcal{L} = \phi \Box \phi$

conformal gravity:
$$\mathcal{L} = -\sqrt{g}\phi\Box^C\phi = -\sqrt{g}\phi\Box\phi + \frac{1}{6}\sqrt{g}R\phi^2$$
 dilatational gauge fixing $\phi = \sqrt{3}M_P$
$$\mathcal{L} = \frac{M_P^2}{2}\sqrt{g}R$$

- n First action is conformal invariant,
- n Scalar field had scale transformation $\delta \phi(x) = \Lambda_D(x) \phi(x)$

$$\phi$$
 choice determines $M_{\rm P}$

See: negative signature of scalars!

Thus: if more physical scalars: start with (-++...+)

Very special real manifolds

- n VSR: very special real manifold: an embedding of a n-dimensional manifold in an (n+1)-dimensional manifold with metric $C_{IJK}h^I dh^J dh^K$ by constraint $C_{IJK}h^I h^J h^K = const.$
- n The cubic homogeneous structure is the conformal symmetry of the theory
- n The constraint is the gauge fixing condition

Geometries from supersymmetric theories with 8 real supercharges

vector multiplets
rigid
(affine)
+conform

affine
very special
real
gauge fix
D

(projective)
very special
(projective)
real
very special

Kähler
manifolds

affine
(special) Kähler

| gauge fix
| D, U(1)

(projective)
(special) Kähler

| wyper-Kähler
| gauge fix
| D, SU(2)

quaternionicKähler

Superconformal formulation for N=1, d=4

- n superconformal group includes dilatations and U(1) R-symmetry
- Super-Poincaré gravity =
 Weyl multiplet: includes (auxiliary) U(1) gauge field
 + compensating chiral multiplet
- n Corresponding scalar is called 'conformon': Y
- n Fixing value gives rise to M_P :

$$YY^*e^{-\kappa^2K/3} = \kappa^{-2} = M_P^2$$

n U(1) is gauge fixed by fixing the imaginary part of Y, e.g. $Y=Y^*$

Superconformal methods for N=1 d=4

```
(n+1) – dimensional Kähler manifold with conformal symmetry (a closed homothetic Killing vector k^i) (implies a U(1) generated by k^j J_j^i)
```

Gauge fix dilatations and U(1)

n-dimensional Hodge-Kähler manifold

Quaternionic-Kähler from hyper-Kähler

4(r+1) – dimensional hyper-Kähler manifold with conformal symmetry (a closed homothetic Killing vector k^i) (implies an SU(2) generated by $\vec{k}^i = k^j \vec{J}_j^i$)

USp(2r,2) \downarrow USp(2r) $\times SU(2)$

Gauge fix dilatations and SU(2)

4r – dimensional quaternionic-Kähler manifold

USp(2r) $\times SU(2)$

B. de Wit, S. Vandoren, series of papers, e.g. 9909228

E. Bergshoeff, S. Cucu, T. de Wit, J. Gheerardyn, S. Vandoren, AVP, 'The map between conformal hypercomplex/hyper-Kähler and quaternionic(-Kähler) geometry', 0411209

(also for hypercomplex \rightarrow quaternionic)

R-symmetry in conformal approach

- n R-group is part of the superconformal group.
- n Should then be gauge-fixed
- n Isometries act also on compensating scalars
- n The moment map is the transformation of the compensating scalars under the isometry
- n In conformal formulation: R × Isom
- n Gauge fixing of R: $R \times Isom \rightarrow Isom$. But the remaining isometries have contribution from R-symmetry

$$\delta_{\mathsf{isom}}(\epsilon^I) + \delta_{\mathsf{SU}(2)} \left[\epsilon^I \left(\vec{\omega}_i k_I^i + \vec{P}_I \right) \right) \right]$$

Potential (in example d=4, N=1)

$$V = V_F + V_D$$

n F-term potential
is unified
by including
the extra chiral
multiplet:

$$Z^A = \{Y, z^\alpha\}$$

$$V = e^{K} \left[-3W\bar{W} + (D_{\alpha}W)g^{\alpha\bar{\beta}}(D_{\bar{\beta}}\bar{W}) \right]$$

$$D_{\alpha}W = \partial_{\alpha}W + (\partial_{\alpha}K)W$$

$$\downarrow$$

$$V = (\partial_{A}W)G^{A\bar{B}}(\partial_{\bar{B}}W)|_{\mathcal{K}=-3}$$

$$\mathcal{K} = -3YY^{*}e^{-K(z,\bar{z})/3}, \quad G_{A\bar{B}} = \partial_{A}\partial_{\bar{B}}\mathcal{K}$$

$$\mathcal{W} = Y^{3}W(z)$$

n D-term potential: is unified as FI is the gauge transformation of the compensating scalar:

$$V_{D} = \frac{1}{2}D^{2}$$

$$D = \frac{1}{2}ik^{\alpha}\partial_{\alpha}K - \frac{1}{2}ik^{\bar{\alpha}}\partial_{\bar{\alpha}}K + g\xi$$

$$= \frac{1}{2}ik^{A}\partial_{A}K - \frac{1}{2}ik^{\bar{A}}\partial_{\bar{A}}K \Big|_{\mathcal{K}=-3}$$

4. Example: Stable de Sitter vacua from 5 d supergravity

- n A few models have been found in d=5, N=2 (Q=8) that allow de Sitter vacua where the potential has a minimum at the critical point B. Cosemans, G. Smet, 0502202
- n A few years ago similar models where found for d=4,

 N=2

 P. Frè, M. Trigiante, AVP, 0205119
- n These are exceptional: apart from these constructions all de Sitter extrema in theories with 8 or more supersymmetries are at most saddle points of the potential

Main ingredients

n Tensor multiplets.

Abelian case: tensors (2-forms) dual to vector multiplets (in d=5).

However, they allow gaugings that are not possible for vector multiplets

- Non-compact gauging:SO(1,1) gauge group involved
- n Fayet-Iliopoulos terms: the compensating hypermultiplet transforms under the gauge group.

The model

- n 1 vector multiplet (+ 1 compensating)
- n 2 tensor multiplets
- n No hypermultiplet (1 compensating)
- Nectors (A^0, A^3) and tensors (B^1, B^2) in one 'very special real' structure' determined by $h^0 \left[(h^1)^2 (h^2)^2 (h^3)^2 \right]$
- n 3 physical scalars form very special real space $SO(2,1) \times SO(1,1)$ SO(2)
- n Embedded in 2 vector mult. + 2 tensor mult. with conformal symmetry

Gauging

- Nector A^0 and A^3 can be used for gauging: 2 Abelian factors.
- n Isometries that are gauged:
 - rotation between tensors B^1 and B^2 (scalars h^1 and h^2): isometry in part $SO(1,1) \subset SO(2,1)$. This is only possible because they are dualized to tensors. As vectors they should have been in adjoint representation. *Tensor contribution to potential*: square of transformation of tensorinos
 - FI term = gauging of SO(2) subgroup of the SU(2) in compensating hypermultiplet. Here the embedding matrix is the moment map

Potential: square of transformations of gravitini and gaugini: simpler at once in extended space:

$$V^{(V)} = -4C^{IJK}h_K \vec{P}_I \cdot \vec{P}_J, \qquad \vec{P}_3 = (0, 0, g\xi)$$

Vacuum

- The constraint $h^0[(h^1)^2 (h^2)^2 (h^3)^2] = 1$ solved for h^0 in terms of scalars $\phi^i = h^i$ (i=1,2,3).
- n Potential

$$V = V^{(T)} + V^{(V)}$$

$$= \frac{g^2 (\phi^1)^2 - (\phi^2)^2}{18} + 3g^2 \xi^2 ||\phi||^2$$

$$||\phi||^2 \equiv (\phi^1)^2 - (\phi^2)^2 - (\phi^3)^2$$

- n Extremum: $\phi^3 = 0$, $(\phi^1)^2 (\phi^2)^2 = \frac{1}{3}\xi^{-2/3}$ $V_{\text{min}} = \frac{3}{2}g^2\xi^{4/3}$
- n Second derivatives, diagonalized: $m^2 = g^2 \left\{ 0, \frac{8}{3}, \frac{2}{3} \right\} V_{\text{min}}$
- n BEH effect: Spontaneously broken SO(1,1). Vector becomes massive. Goldstone boson absorbed.

5. Final remarks

- n A classification of the landscape of all supergravities is not yet completed, but basic principles are known.
- n With the restrictions that we have imposed, the possible gaugings still have to be discussed.
 - Which gaugings produce positive definite kinetic terms?
- n Dualities between multiplets do not hold for gauged supergravities. What is a complete set of theories?
- n It may be good to construct an inventory of known theories: actions transformation laws field equations
- n More ambitious: solutions, relations by compactification