## **Microscopics of Black Rings**

#### **David Mateos**

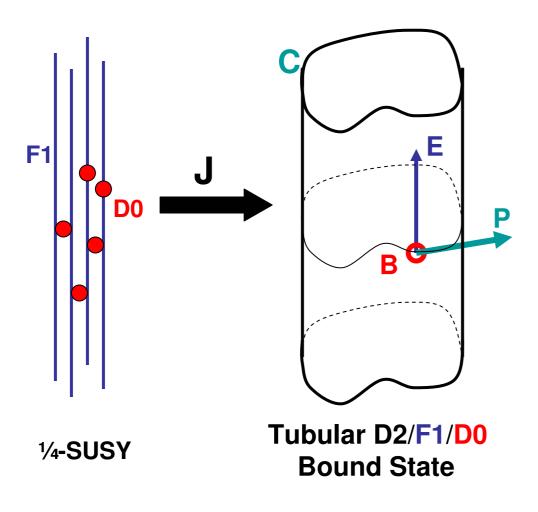
### Why are Supersymmetric BRs interesting?

- Establish non-uniqueness in susy sector
- Establish stability of Black Rings
- Implications for microscopic entropy calculation
  - ! Not only counting BPS states with same charges is not enough, it is also not right!
- Provide ideal arena to study these issues because:

susy + know microscopic constituents + stability mechanism

## Supertubes

Supersymmetric Brane Expansion in Flat Space by Angular Momentum

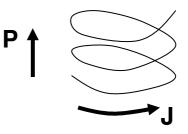


1/4-SUSY preserved

 $Q_{F1}$  and  $Q_{D0}$  dissolved as fluxes J generated as integrated Poynting E =  $Q_{F1} + Q_{D0}$ 

#### Arbitrary Cross-section C in E<sup>8</sup>

TS-Dualizing = `Helical' String with wave on it



No net D2-brane charge but dipole  $q_{D2} \gg n_{D2}$ 

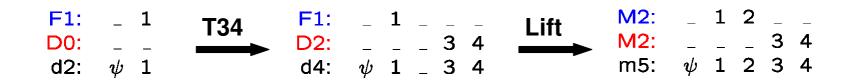
Elvang, Emparan, DM & Reall Bena & Warner Gauntlett & Gutowski

ρ

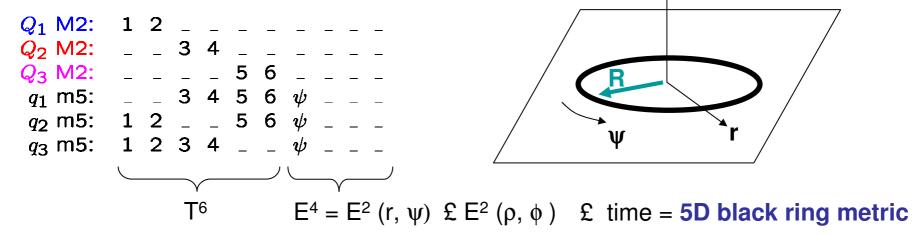
**Ring solution with regular horizon ! 3 charges** 

**Best microscopic description ! M-theory** 

First, lift 2-charge supertube to M-theory:

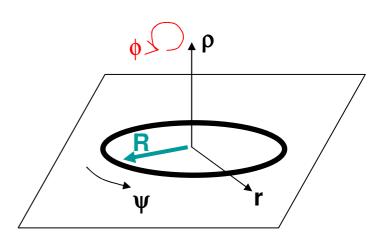


With 3 charges, each pair expands:





7 parameters: R,  $Q_i$ ,  $q_i$ 



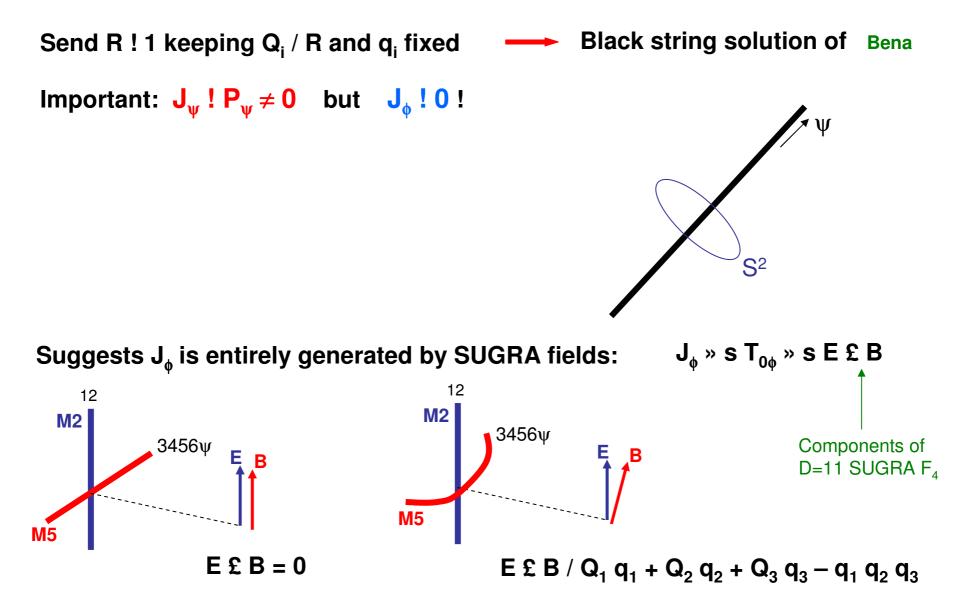
**5 conserved charges:**  $Q_i$ ,  $J_{\psi}$  and  $J_{\phi}$ 

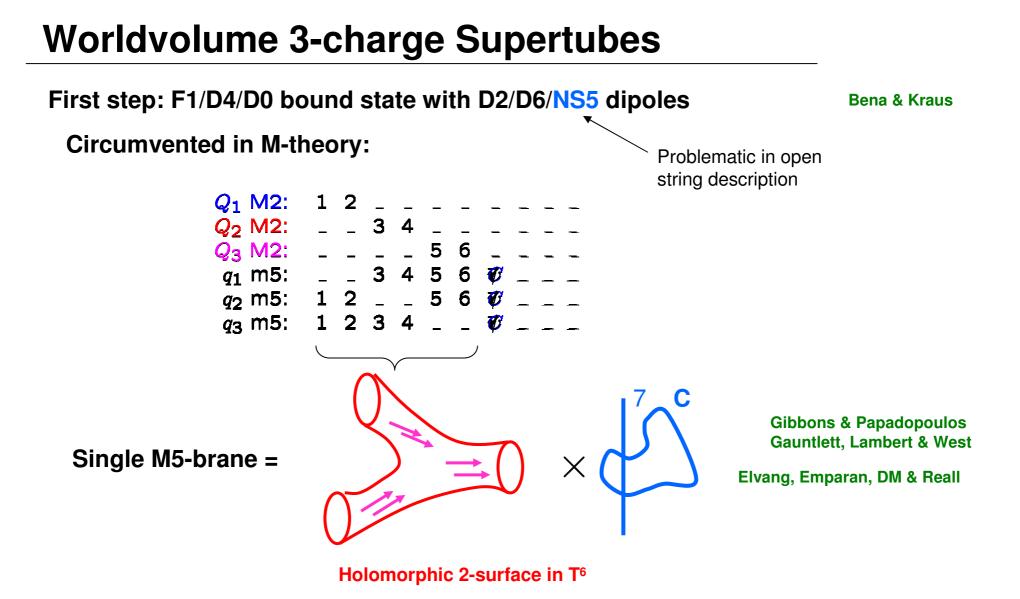
Infinite violation of uniqueness by 2 continuous parameters

#### Choosing $Q_i$ , $q_i$ and $J_{\psi}$ as independent parameters:

$$S = 2\pi \sqrt{\frac{D^2}{4} - DJ_{\psi} - \frac{1}{4}(q_1^2Q_1^2 + q_2^2Q_2^2 + q_3^2Q_3^2) + \frac{D}{2}\left(\frac{Q_1Q_2}{q_3} + \frac{Q_2Q_3}{q_1} + \frac{Q_1Q_3}{q_2}\right)}$$
$$D = q_1q_2q_3$$

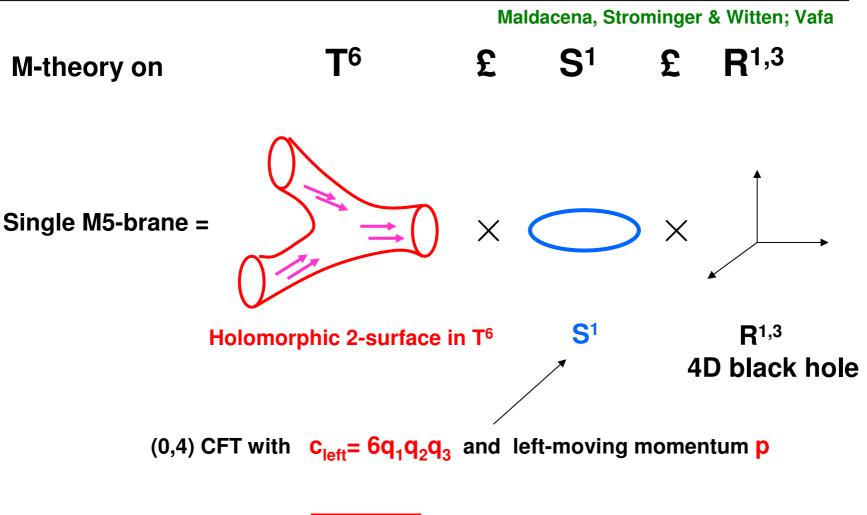
### **Black String Limit**





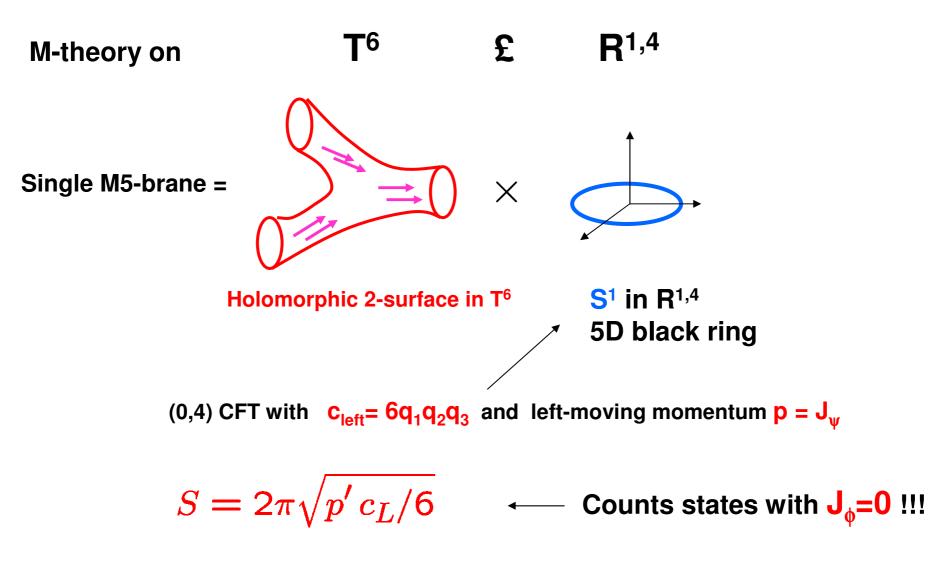
Turning on H induces M2 charge and allows arbitrary C In summary: Captures 3 dipoles,  $J_{\phi} = 0$ 

#### **Microscopic Entropy Counting**



 $S = 2\pi \sqrt{p' c_L/6}$  p' = p + M2-induced shift + zero-point shift

## **Microscopic Entropy Counting**



However, same spirit as Strominger & Vafa '96.

Komar Integral: 
$$J_{\psi} = \int_{\partial V} * dk_{\psi}$$

At infinity: 
$$\int_{S^3} * dk_\psi = J_\psi \ , \ \int_{S^3} * dk_\phi = J_\phi$$

At the horizon: 
$$\int_{S^1 \times S^2} *dk_\psi = p'$$
 ,  $\int_{S^1 \times S^2} *dk_\phi = 0$ 

#### **Provides New Comparison of the Bek-Haw vs Mic Entropy:**

$$S = 2\pi \sqrt{q_1 q_2 q_3 p'}$$

# **ONE MESSAGE**

