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Introduction

Much progress has been made in classify-

ing supersymmetric solutions of supergravity

theories.

Want:

1. A precise characterisation of solutions

to the equations of motion admitting Killing

spinors

2. Explicit solutions where possible.

Key Tool: G-Structures

Gauntlett, Martelli, Pakis, Waldram

Gauntlett, Pakis

Gauntlett, Gutowski, Hull, Pakis, Reall

....



Can apply the programme in 3 broad ways:

1. Classify the most general supergravity so-

lutions in D=10/11 supergravity

2. Lower-Dimensional Supergravities

Can be much more explicit in D = 4,5,6,7

Black rings, Gödel, ...

Black hole uniqueness theorems

3. Special classes of Solutions

Compactifications to M4 with flux

Compactifications to AdSn.



PLAN:

1. Classification of D = 11 AdS5 solutions

Gauntlett, Martelli, Sparks, Waldram

2. Construction of Sasaki-Einstein metrics in

D = 5 and D = 7

Gauntlett, Martelli, Sparks, Waldram

3. Deformations of AdS4 solutions in D = 11.
Gauntlett, Lee, Mateos, Waldram



Classifying AdS5 solutions in D = 11

Until recently, surprisingly few explicit AdS5

solutions:

Type IIB:

ds2 = AdS5 × Y5

F5 = V ol(AdS5) + V ol(Y5)

where Y5 is Sasaki-Einstein

Arise from D3-branes at the apex of Calabi-

Yau three-fold cones:

ds2 = dr2 + r2ds2(Y5)

Two explicit examples: S5 and T1,1 - both

homogeneous, field theories known.

D = 11:

N = 1 and 2 examples of Maldacena and

Nunez. Field theories obscure.



We have classified the most general AdS5 so-

lutions of D = 11:

ds2 = e2λ(x)[ds2(AdS5) + ds2(M6)(x)]

G4 = G4(x)

i.e. G is a 4-form on M6. Ansatz preserves

symmetries of AdS5.

Explicit Solutions

Assume that M6 is complex. Then can ex-

plicitly construct all compact regular solu-

tions by solving ODEs.

? Topology: S2
→M6 → B4

? Metric for M6: completely explicit given

metric on B4 which can be in one of two

classes:



(a) B4 is Kähler-Einstein with positive scalar

curvature (Kähler and Rij = λgij with λ > 0).

These have been classified by Tian and Yau:

explicit: S2
× S2, CP2

implicit: del Pezzo Pk k = 3, . . .8 (CP2 blown

up at k points).

(b) B4 is a product.

All explicit: S2
× S2, S2

×H2, S2
× T2

A special case of the S2 bundle over S2
×

H2 case gives the N = 1 Maldacena Nunez

solution.

Nice

? What is dual conformal field theory? Some-

thing to do with M5-branes.

? Where is the Maldacena N = 2 solution?



Consider D=11 solution with S2
× T2 base:

Dimensional reduction on one of the S1s of

T2 and then T-dualise on the other S1
→

type IIB solution:

AdS5 ×X5

F5 ∼ V ol(AdS5) + V ol(X5)

⇒ X5 must be Sasaki-Einstein, at least lo-

cally. In fact gives an infinite number of new

explicit Sasaki-Einstein metrics on S2
× S3!

Are all S1 bundles over S2
× S2 (like T1,1),

called Y p,q with integers p > q



Sasaki-Einstein

A SE X5 is equivalent to the cone

ds2 = dr2 + r2ds2(X5)

being CY3.

There is a canonical Killing vector:

(∂ψ)
j = r(∂r)

iJi
j

This corresponds to the “U(1)” R-symmetry

of the D=4 SCFT.

*Locally*, metric can be written

ds2(X5) = (dψ+ σ) + ds2(B4)

where B4 is Kähler-Einstein and dσ = 2J4

Three possibilities:



1. Regular SE:

Have a U(1) R-symmetry and it is free.

B4 is globally defined and hence can classify

using Tian and Yau:

Explicit:

B4 = CP2
→ S5

B4 = S2
× S2

→ T1,1

Implicit: B4 = Pk del Pezzo k = 3, . . .8.

2. Quasi regular SE:

U(1) R-symmetry with finite isotropy groups.

B4 is an orbifold.

3. Irregular SE:

Have a non-compact R R-symmetry.

B4 is not a manifold.



The Y p,q metrics obtained from D = 11 pro-

vide the first explicit examples in the quasi-

regular class, and the very first examples in

the irregular class!

? Isometry group ∼ SU(2) × U(1) × U(1)

? Topology: S2
× S3 just as for T1,1

Can generalise and construct new Sasaki-Einstein

metrics in any odd dimension. Return to

D = 7 case later.



Predictions for dual SCFTs

? Symmetries: SU(2)× U(1)× U(1)× U(1)B

? Central charges:

a(Y p,q)

a(S5)
= V ol(S5)/V ol(Y p,q)

=
3p2[3q2 − 2p2 + p(4p2 − 3q2)1/2]

q2[2p+ (4p2 − 3q2)1/2]

? Baryons arise from D3-branes wrapped on

supersymmetric 3-cycles [Martelli, Sparks; Herzog,

Ejaz, Klebanov]. R-charges of baryons:

R ∝
V ol(Σi)

V ol(Y p,q)
= ...



Dual field theory

Quiver gauge theory plus superpotential is

now known [Benvenuti, Franco, Hanany, Martelli, Sparks]

Using the procedure of a-maximisation [Intrili-

gator, Wecht] can determine the central charge a

and the R-charges of the baryons. Find ex-

act agreement with that predicted from the

geometry.

Now have an infinite number of AdS/CFT

examples where both the geometry and the

field theory are known. Further generalisa-

tions are being pursued.



Deformations of AdS4 solutions in D = 11

Supersymmetric conformal field theories can

have exactly marginal deformations. Basic

reason: beta functions depend on gamma

functions.

e.g. N = 4 SYM has three complex such de-

formations. One of them, the β-deformation,

preserves U(1)×U(1) and also exists in other

CFTs with a U(1) × U(1) symmetry such as

AdS5 × T1,1 and AdS5 × Y p,q.

If we know the dual AdS solution, can we

find the corresponding deformed solution?



Lunin and Maldacena: found a very clever

way of generating β-deformations.

Idea:

? Consider AdS5 × X5 where X5 has U(1) ×

U(1) isometry.

? This is a solution of D=8 SUGRA which

has Sl(2, R)×Sl(3, R) duality symmetry. The

Sl(2, R) acts on τ = B12 + i
√

G(T2).

? The action

τ →
τ

1 + γτ

generates a new regular solution which up-

lifts to a new AdS5 solution with additional

fluxes.

? If U(1)×U(1) isometry commutes with susy

(i.e. commutes with U(1)R) then the de-

formed solution preserves susy.

Applied to AdS5×S
5, AdS5×T

1,1 and AdS5×

Y p,q.

(Can also consider breaking susy and also de-

formations of non-conformal theories).



Can be generalised to AdS solutions of D=11

that have a U(1)3 action on compact space.

The important Sl(2, R) action of the D = 8

SUGRA is now acting on τ = C123+i
√

G(T3).

Lunin and Maldacena applied this to AdS4 ×

S7. We have generalised:

Consider the supersymmetric solutions of D=11:

ds2 = AdS4 ×H7

F4 ∝ V ol4

Dual to field theories on M2-branes sitting at

the apex of special holonomy cones:

ds2 = dr2 + r2(ds2(H7))

Spin(7) ↔ H7 is Weak G2 ↔ N=1 susy

CY8 ↔ H7 is Sasaki-Einstein ↔ N=2 susy

Hyper-Kähler ↔ H7 is Tri-Sasaki ↔ N=3 susy



To find supersymmetric deformed solutions

using Lunin and Maldacena need examples

with a U(1)3 isometry that preserve some

supersymmetry.

? Homogeneous examples

Weak G2:

N(k,l)=SU(3)/U(1)

Squashed 7-sphere

Sasaki-Einstein:

Q(1,1,1) - S1 bundle over S2
× S2

× S2

M(3,2) - S1 bundle over CP2
× S2

tri-Sasaki:

N(1,1)

? Inhomogeneous Examples

Our construction of D=5 SE Y p,q can be

generalised to all odd dimensions. For D=7

we find infinite new families of cohomogene-

ity one Sasaki-Einstein manifolds that gener-

alise M(3,2) and Q(1,1,1).



Deformed solutions:

Tri-Sasaki:

N(1,1)

Has an exactly marginal deformation that breaks

N = 3 → N = 1

Sasaki-Einstein:

M(3,2), Q(1,1,1) and co-homogeneity one

generalisations:

All have exactly marginal deformations that

preserve N = 2 susy

Weak G2:

N(k,l)=SU(3)/U(1) and squashed 7-sphere

Both have exactly marginal deformations that

maintain N = 1 susy



Field Theory

For AdS5×X5 solutions of type IIB with U(1)×

U(1) isometry, Lunin and Maldacena argued

(using string field theory) that the dual ver-

sion of the deformed geometries are obtained

by adding some phases eiπγ into the Lagrangian.

In some cases this leads to a modified super-

potential.



AdS5 × T1,1
[Klebanov, Witten]

SU(2)2 × U(1)R global symmetry

SU(N)2 quiver gauge theory

Ai in (2,1) and (N, N̄)

Bi in (1,2) and (N̄ ,N)

W = εijεklTr(AiBkAkBl)

Chiral primaries:

Tr(Ai1Bj1...AikBjk) symmetrised over SU(2)

indices, i.e. in (k+ 1, k+ 1), and ∆ = 3k/2

γ-deformation: Lunin and Maldacena

W → Tr(eiπγA+B+A−B−−e
−iπγA−B+A+B−)

For small γ:

∆W ∝ Tr(A+B+A−B− +A−B+A+B−)

Unique ∆ = 3 chiral primary which breaks

SU(2)2 → U(1) × U(1).



For the AdS4 × H7 solutions of D=11 we

know much less about the field theories living

on the M2-branes which are strongly coupled

gauge theories in the IR.

Nevertheless we have some understanding of

the Q(1,1,1), M(3,2) [Fabbri, Fre, Gualtieri, Reina,

Tomasiello, Zaffaroni, Zampa] and N(1,1) [Billo, Fabbri,

Fre, Merlatti, Zaffaroni] cases.

Chiral spectrum agreeing with Kaluza-Klein

modes.

Supersymmetric 5-cycles agreeing with baryons

(we did the N(1,1) case).

In addition we can identify γ-deformation, for

small γ by finding the unique superpotential

that is:

Chiral with ∆ = 2

Preserves U(1)3 global symmetry.



AdS4 ×Q(1,1,1)

SU(2)3 × U(1)R global symmetry

SU(N)3 quiver gauge theory

Ai in (2,1,1) and (N, N̄,1)

Bi in (1,2,1) and (1, N, N̄)

Ci in (1,1,2) and (N̄ ,1, N)

No superpotential!

Chiral primaries:

Tr(ABC)k symmetrised over all SU(2) in-

dices, i.e. in (k+ 1, k+ 1, k+ 1), and ∆ = k

Note here we must assume that other SU(2)

reps decouple in the IR.

For small γ, what is superpotential deforma-

tion?

Tr(ABC)2 has ∆ = 2 and is in (3,3,3) rep,

which has an element that preserves U(1)3.

Unique.

Analogous story for M(3,2) and N(1,1) case.



AdS4 ×M(3,2)

SU(3) × SU(2) × U(1)R global symmetry

SU(N)2 quiver gauge theory

U i in (3,1) and

V A in (1,2) and

No superpotential.

Chiral primaries:

Tr(U3V 2)k symmetrised over all SU(3)×SU(2)

indices, ∆ = 2k

Again we must assume that other SU(3) ×

SU(2) reps decouple in the IR.

For small γ, what is superpotential deforma-

tion?

Tr(U3V 2) has ∆ = 2 and is in (10,3) rep,

which has an element that preserves U(1)3.

Unique.



Conclusions

Classifying SUGRA solutions is a profitable

endeavour. More to do on AdS side:

? Gravity duals for more general deformations

for e.g. AdS5 × S5?

? Field theories for AdS4 × YSE solutions of

D=11 with YSE generalising Q(1,1,1) and

M(3,2). Check consistency with deforma-

tions.

? Field theories for N = 1 AdS4 solutions of

D = 11 e.g. AdS4 ×H7 when H7 is weak G2.

? Could classify AdSn for other n in type

IIB/D=11.

? New SE manifolds of [Cvetic, Lu, Page, Pope]

? Geometries describing renormalisation group

flows between different field theories?

? Analogue of Calabi’s theorem?


