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Introduction

Much progress has been made in classify-
ing supersymmetric solutions of supergravity
theories.

Want:
1. A precise characterisation of solutions
to the equations of motion admitting Killing
sSpinors

2. Explicit solutions where possible.

Key Tool: G-Structures



Can apply the programme in 3 broad ways:

1. Classify the most general supergravity so-
lutions in D=10/11 supergravity

2. Lower-Dimensional Supergravities

Can be much more explicit in D =4,5,6,7
Black rings, Godel, ...
Black hole uniqueness theorems

3. Special classes of Solutions

Compactifications to M4 with flux
Compactifications to AdS),.



PLAN:

1. Classification of D =11 AdSg solutions

2. Construction of Sasaki-Einstein metrics in
D=5and D=7

3. Deformations of AdS,4 solutionsin D = 11.



Classifying AdSs solutions in D =11

Until recently, surprisingly few explicit AdSs
solutions:
Type IIB:

d82
Fs

AdS5 X Y5
Vol(AdSs) + Vol(Ys)

where Yg is Sasaki-Einstein
Arise from D3-branes at the apex of Calabi-
Yau three-fold cones:

ds® = dr? + r2ds’(Ys)
Two explicit examples: S° and 711 - both
homogeneous, field theories known.

D =11:

N = 1 and 2 examples of Maldacena and
Nunez. Field theories obscure.



We have classified the most general AdSs so-
lutions of D = 11:

ds? = e2M)[ds2(AdSs) + ds2(Mg)(z)]
Ga = Ga(x)

i.,e. G is a 4-form on Mg. Ansatz preserves
symmetries of AdSs.

Explicit Solutions

Assume that Mg is complex. Then can ex-
plicitly construct all compact regular solu-
tions by solving ODEs.

x Topology: S2 — Mg — Ba

* Metric for Mg: completely explicit given
metric on By which can be in one of two
classes:



(a) By is Kahler-Einstein with positive scalar
curvature (Kahler and R;; = Ag;; with A > 0).
These have been classified by Tian and Yau:
explicit: S2 x S2, O P2

implicit: del Pezzo P, k = 3,...8 (CP? blown
up at k points).

(b) By is a product.
All explicit: S2 x S2 82 x H?, K §2 x T2

A special case of the S2 bundle over S2 x
H? case gives the N = 1 Maldacena Nunez
solution.

Nice

* What is dual conformal field theory? Some-
thing to do with Mb5-branes.

* Where is the Maldacena N = 2 solution?



Consider D=11 solution with S2 x T2 base:

Dimensional reduction on one of the Sls of
T2 and then T-dualise on the other S! —
type IIB solution:

AdS5 X X5
Fg ~ Vol(AdSs) + Vol(Xs)
= X5 must be Sasaki-Einstein, at least lo-

cally. In fact gives an infinite number of new
explicit Sasaki-Einstein metrics on S2 x S3!

Are all S bundles over S2 x S? (like T1:1),
called YP:9 with integers p > q



Sasaki-Einstein

A SE Xy is equivalent to the cone
ds® = dr? + r2ds’(Xs)
being CY3.

There is a canonical Killing vector:

(8¢)j — T(ar)ijij
This corresponds to the “U(1)" R-symmetry
of the D=4 SCFT.

*Locally*, metric can be written

ds?(Xs5) = (dy + o) + ds>(Ba)

where B, is Kahler-Einstein and do = 2Jy4

T hree possibilities:



1. Regular SE:

Have a U(1) R-symmetry and it is free.

B4 is globally defined and hence can classify
using Tian and Yau:

Explicit:

By = CP? — 8>

Bg = 52 x §2 — 111

Implicit: B4 = P, del Pezzo k= 3,...8.

2. Quasi regular SE:

U(1) R-symmetry with finite isotropy groups.
B4 is an orbifold.

3. Irreqular SE:

Have a non-compact r R-symmetry.
B4 is not a manifold.



The YP9 metrics obtained from D = 11 pro-
vide the first explicit examples in the quasi-
regular class, and the very first examples in
the irregular class!

x Isometry group ~ SU(2) x U(1) x U(1)
x Topology: S2 x S3 just as for T1:1

Can generalise and construct new Sasaki-Einstein
metrics in any odd dimension. Return to
D = 7 case later.



Predictions for dual SCFTs
* Symmetries: SU(2) xU(1) xU(1) xU(1)p

* Central charges:

a(YP:9)
a(S®)

Vol(S°)/Vol(YPY)

3p2[3¢2 — 2p? + p(4p? — 3¢2)1/?]
q%[2p + (4p2 — 3¢2)1/2]

* Baryons arise from D3-branes wrapped on
supersymmetric 3-cycles
. R-charges of baryons:
Vol(YP:2)




Dual field theory

Quiver gauge theory plus superpotential is
Nnow Known

Using the procedure of a-maximisation

can determine the central charge a
and the R-charges of the baryons. Find ex-
act agreement with that predicted from the
geometry.

Now have an infinite number of AdS/CFT
examples where both the geometry and the
field theory are known. Further generalisa-
tions are being pursued.



Deformations of AdS, solutions in D =11

Supersymmetric conformal field theories can
have exactly marginal deformations. Basic
reason: beta functions depend on gamma
functions.

e.g. N =4 SYM has three complex such de-
formations. One of them, the g-deformation,
preserves U(1) x U(1) and also exists in other
CFTs with a U(1) x U(1) symmetry such as
AdSs x TH1 and AdSs x YPA.

If we know the dual AdS solution, can we
find the corresponding deformed solution?



found a very clever
way of generating @-deformations.

Idea:
*x Consider AdSs x Xg5 where Xg has U(1) x
U(1) isometry.
* This is a solution of D=8 SUGRA which
has Si(2, R) x SI(3, R) duality symmetry. The
S1(2, R) acts on 7 = Byo + i\/G(T?).
* T he action
-

1 +n~r
generates a new regular solution which up-
lifts to a new AdSs solution with additional
fluxes.
xIf U(1)xU(1) isometry commutes with susy
(i.,e. commutes with U(1)gr) then the de-
formed solution preserves susy.

T

Applied to AdSs x S°, AdSsxT1H1 and AdSs x
Y P4

(Can also consider breaking susy and also de-
formations of non-conformal theories).



Can be generalised to AdS solutions of D=11
that have a U(1)3 action on compact space.
The important SI(2,R) action of the D = 8

SUGRA is now acting on 7 = Cqo341i1/G(T3).

applied this to AdS4 %
S’. We have generalised:

Consider the supersymmetric solutions of D=11:

ds® = AdS, x H7
Fp o< Voly

Dual to field theories on M2-branes sitting at
the apex of special holonomy cones:

ds® = dr? 4+ r?(ds?*(H7))
Spin(7) < H7 is Weak G5 «< N=1 susy

CYg < H7 is Sasaki-Einstein < N=2 susy

Hyper-Kahler «<- H- is Tri-Sasaki «» N=3 susy



To find supersymmetric deformed solutions
using need examples
with a U(1)3 isometry that preserve some
supersymmetry.

* Homogeneous examples

Weak Go:
N(k,D=SU(3)/U(1)
Squashed 7-sphere

Sasaki-Einstein:
Q(1,1,1) - S! bundle over 52 x S2 x S?
M(3,2) - S1 bundle over CP? x S?

tri-Sasaki:
N(1,1)

* Inhomogeneous Examples

Our construction of D=5 SE YPY can be
generalised to all odd dimensions. For D=7
we find infinite new families of cohomogene-
ity one Sasaki-Einstein manifolds that gener-
alise M(3,2) and Q(1,1,1).



Deformed solutions:

Tri-Sasaki:

N(1,1)

Has an exactly marginal deformation that breaks
N=3-N=1

Sasaki-Einstein:

M(3,2), Q(1,1,1) and co-homogeneity one
generalisations:

All have exactly marginal deformations that
preserve N = 2 susy

Weak Go:

N(k,D)=SU(3)/U(1) and squashed 7-sphere
Both have exactly marginal deformations that
maintain N = 1 susy



Field Theory

For AdSsx X5 solutions of type IIB with U(1) x
U(1) isometry, argued
(using string field theory) that the dual ver-
sion of the deformed geometries are obtained
by adding some phases ¢ into the Lagrangian.

In some cases this leads to a modified super-
potential.



AdS5 X Tl’l

SU(2)2 x U(1) global symmetry

SU(N)? quiver gauge theory

A; in (2,1) and (N, N)

B; in (1,2) and (N, N)

W — eijeler(AinAkBl)

Chiral primaries:

Tr(A;, Bj,---A;, Bj, ) symmetrised over SU(2)

indices, i.e. in (k+1,k+1), and A = 3k/2

~v-deformation:
W — Tr(eiW7A+B_|_A_B_ —e_iW’yA_B_|_A_|_B_)

For small ~:
AW TT(A_|_B_|_A_B_ —|— A_B_|_A_|_B_)

Unique A = 3 chiral primary which breaks
SU(2)2 - U(1) x U(1).



For the AdS, x H7 solutions of D=11 we
know much less about the field theories living
on the M2-branes which are strongly coupled
gauge theories in the IR.

Nevertheless we have some understanding of
the Q(1,1,1), M(3,2)
and N(1,1)

cases.
Chiral spectrum agreeing with Kaluza-Klein
modes.
Supersymmetric 5-cycles agreeing with baryons
(we did the N(1,1) case).

In addition we can identify v-deformation, for
small v by finding the unique superpotential
that is:

Chiral with A =2
Preserves U(1)3 global symmetry.



AdSy x Q(1,1,1)
SU(2)3 x U(1)p global symmetry
SU(N)3 quiver gauge theory

A; in (2,1,1) and (N, N, 1)
B; in (1,2,1) and (1, N, N)
C; in (1,1,2) and (N,1,N)

No superpotentiall

Chiral primaries:
Tr(ABC)* symmetrised over all SU(2) in-
dices, i.e. in(k+1,k+1,k+1), and A =k

Note here we must assume that other SU(2)
reps decouple in the IR.

For small v, what is superpotential deforma-
tion?

Tr(ABC)2 has A =2 and is in (3,3,3) rep,
which has an element that preserves U(1)3.
Unique.

Analogous story for M(3,2) and N(1,1) case.



AdS4 X M(3,2)
SU(3) x SU(2) x U(1)r global symmetry
SU(N)? quiver gauge theory

U' in (3,1) and
VA4 in (1,2) and

No superpotential.

Chiral primaries:
Tr(U3V2)k symmetrised over all SU(3)xSU(2)
indices, A = 2k

Again we must assume that other SU(3) x
SU(2) reps decouple in the IR.

For small v, what is superpotential deforma-
tion?

Tr(U3V?2) has A = 2 and is in (10, 3) rep,
which has an element that preserves U(1)3.
Unique.



Conclusions

Classifying SUGRA solutions is a profitable
endeavour. More to do on AdS side:

*x Gravity duals for more general deformations
for e.g. AdSs x S°7

* Field theories for AdS4 X Ygp solutions of
D=11 with Ygg generalising Q(1,1,1) and
M(3,2). Check consistency with deforma-
tions.

* Field theories for N = 1 AdS4 solutions of
D =11 e.g. AdS4 x H7 when H7 is weak G».

*x Could classify AdS, for other n in type
IIB/D=11.

* New SE manifolds of

* Geometries describing renormalisation group
flows between different field theories?

* Analogue of Calabi's theorem?



