AdS Solutions and Some Deformations

Jerome Gauntlett

Introduction

Much progress has been made in classifying supersymmetric solutions of supergravity theories.

Want:

- 1. A precise characterisation of solutions to the equations of motion admitting Killing spinors
- 2. Explicit solutions where possible.

Key Tool: *G*-Structures

Gauntlett, Martelli, Pakis, Waldram

Gauntlett, Pakis

Gauntlett, Gutowski, Hull, Pakis, Reall

. . . .

Can apply the programme in 3 broad ways:

- 1. Classify the most general supergravity solutions in D=10/11 supergravity
- 2. Lower-Dimensional Supergravities

Can be much more explicit in D = 4, 5, 6, 7Black rings, Gödel, ... Black hole uniqueness theorems

3. Special classes of Solutions

Compactifications to M_4 with flux Compactifications to AdS_n .

PLAN:

- 1. Classification of $D=11\ AdS_5$ solutions Gauntlett, Martelli, Sparks, Waldram
- 2. Construction of Sasaki-Einstein metrics in D=5 and D=7

Gauntlett, Martelli, Sparks, Waldram

3. Deformations of AdS_4 solutions in D=11. Gauntlett, Lee, Mateos, Waldram

Classifying AdS_5 solutions in D=11

Until recently, surprisingly few explicit AdS_5 solutions:

Type IIB:

$$ds^{2} = AdS_{5} \times Y_{5}$$

$$F_{5} = Vol(AdS_{5}) + Vol(Y_{5})$$

where Y_5 is Sasaki-Einstein Arise from D3-branes at the apex of Calabi-Yau three-fold cones:

$$ds^2 = dr^2 + r^2 ds^2(Y_5)$$

Two explicit examples: S^5 and $T^{1,1}$ - both homogeneous, field theories known.

D = 11:

N=1 and 2 examples of Maldacena and Nunez. Field theories obscure.

We have classified the most general AdS_5 solutions of D=11:

$$ds^{2} = e^{2\lambda(x)}[ds^{2}(AdS_{5}) + ds^{2}(M_{6})(x)]$$

$$G_{4} = G_{4}(x)$$

i.e. G is a 4-form on M_6 . Ansatz preserves symmetries of AdS_5 .

Explicit Solutions

Assume that M_6 is complex. Then can explicitly construct all compact regular solutions by solving ODEs.

* Topology:
$$S^2 \rightarrow M_6 \rightarrow B_4$$

* Metric for M_6 : completely explicit given metric on B_4 which can be in one of two classes:

(a) B_4 is Kähler-Einstein with positive scalar curvature (Kähler and $R_{ij} = \lambda g_{ij}$ with $\lambda > 0$). These have been classified by Tian and Yau:

explicit: $S^2 \times S^2$, CP^2

implicit: del Pezzo P_k k = 3, ... 8 (CP^2 blown

up at k points).

(b) B_4 is a product.

All explicit: $S^2 \times S^2$, $S^2 \times H^2$, $S^2 \times T^2$

A special case of the S^2 bundle over $S^2 \times H^2$ case gives the N=1 Maldacena Nunez solution.

Nice

- * What is dual conformal field theory? Something to do with M5-branes.
- * Where is the Maldacena N=2 solution?

Consider D=11 solution with $S^2 \times T^2$ base:

Dimensional reduction on one of the S^1 s of T^2 and then T-dualise on the other $S^1 \to {\rm type}$ IIB solution:

$$AdS_5 \times X_5$$

$$F_5 \sim Vol(AdS_5) + Vol(X_5)$$

 $\Rightarrow X_5$ must be Sasaki-Einstein, at least locally. In fact gives an infinite number of new explicit Sasaki-Einstein metrics on $S^2 \times S^3$!

Are all S^1 bundles over $S^2 \times S^2$ (like $T^{1,1}$), called $Y^{p,q}$ with integers p > q

Sasaki-Einstein

A SE X_5 is equivalent to the cone

$$ds^2 = dr^2 + r^2 ds^2(X_5)$$

being CY_3 .

There is a canonical Killing vector:

$$(\partial_{\psi})^j = r(\partial_r)^i J_i^{j}$$

This corresponds to the "U(1)" R-symmetry of the D=4 SCFT.

Locally, metric can be written

$$ds^{2}(X_{5}) = (d\psi + \sigma) + ds^{2}(B_{4})$$

where B_4 is Kähler-Einstein and $d\sigma = 2J_4$

Three possibilities:

1. Regular SE:

Have a U(1) R-symmetry and it is free.

 B_4 is globally defined and hence can classify using Tian and Yau:

Explicit:

$$B_4 = CP^2 \to S^5$$

$$B_4 = S^2 \times S^2 \to T^{1,1}$$

Implicit: $B_4 = P_k$ del Pezzo $k = 3, \dots 8$.

2. Quasi regular SE:

U(1) R-symmetry with finite isotropy groups. B_4 is an orbifold.

3. Irregular SE:

Have a non-compact \mathbb{R} R-symmetry. B_4 is not a manifold.

The $Y^{p,q}$ metrics obtained from D=11 provide the first explicit examples in the quasi-regular class, and the very first examples in the irregular class!

- * Isometry group $\sim SU(2) \times U(1) \times U(1)$
- * Topology: $S^2 \times S^3$ just as for $T^{1,1}$

Can generalise and construct new Sasaki-Einstein metrics in any odd dimension. Return to D=7 case later.

Predictions for dual SCFTs

- * Symmetries: $SU(2) \times U(1) \times U(1) \times U(1)_B$
- * Central charges:

$$\frac{a(Y^{p,q})}{a(S^5)} = Vol(S^5)/Vol(Y^{p,q})$$

$$= \frac{3p^2[3q^2 - 2p^2 + p(4p^2 - 3q^2)^{1/2}]}{q^2[2p + (4p^2 - 3q^2)^{1/2}]}$$

* Baryons arise from D3-branes wrapped on supersymmetric 3-cycles [Martelli, Sparks; Herzog, Ejaz, Klebanov]. R-charges of baryons:

$$R \propto \frac{Vol(\Sigma_i)}{Vol(Y^{p,q})} = \dots$$

Dual field theory

Quiver gauge theory plus superpotential is now known [Benvenuti, Franco, Hanany, Martelli, Sparks]

Using the procedure of a-maximisation [Intriligator, Wecht] can determine the central charge a and the R-charges of the baryons. Find exact agreement with that predicted from the geometry.

Now have an infinite number of AdS/CFT examples where both the geometry and the field theory are known. Further generalisations are being pursued.

Deformations of AdS_4 solutions in D = 11

Supersymmetric conformal field theories can have exactly marginal deformations. Basic reason: beta functions depend on gamma functions.

e.g. N=4 SYM has three complex such deformations. One of them, the β -deformation, preserves $U(1)\times U(1)$ and also exists in other CFTs with a $U(1)\times U(1)$ symmetry such as $AdS_5\times T^{1,1}$ and $AdS_5\times Y^{p,q}$.

If we know the dual AdS solution, can we find the corresponding deformed solution?

Lunin and Maldacena: found a very clever way of generating β -deformations.

Idea:

 \star Consider $AdS_5 \times X_5$ where X_5 has $U(1) \times U(1)$ isometry.

* This is a solution of D=8 SUGRA which has $Sl(2,R) \times Sl(3,R)$ duality symmetry. The Sl(2,R) acts on $\tau = B_{12} + i\sqrt{G(T^2)}$.

* The action

$$au
ightarrow rac{ au}{1+\gamma au}$$

generates a new **regular** solution which uplifts to a new AdS_5 solution with additional fluxes.

 \star If $U(1)\times U(1)$ isometry commutes with susy (i.e. commutes with $U(1)_R$) then the deformed solution preserves susy.

Applied to $AdS_5 \times S^5$, $AdS_5 \times T^{1,1}$ and $AdS_5 \times Y^{p,q}$.

(Can also consider breaking susy and also deformations of non-conformal theories).

Can be generalised to AdS solutions of D=11 that have a $U(1)^3$ action on compact space. The important Sl(2,R) action of the D=8 SUGRA is now acting on $\tau=C_{123}+i\sqrt{G(T^3)}$.

Lunin and Maldacena applied this to $AdS_4 \times S^7$. We have generalised:

Consider the supersymmetric solutions of D=11:

$$ds^2 = AdS_4 \times H_7$$
$$F_4 \propto Vol_4$$

Dual to field theories on M2-branes sitting at the apex of special holonomy cones:

$$ds^2 = dr^2 + r^2(ds^2(H_7))$$

 $Spin(7) \leftrightarrow H_7$ is Weak $G_2 \leftrightarrow N=1$ susy

 $CY_8 \leftrightarrow H_7$ is Sasaki-Einstein \leftrightarrow N=2 susy

Hyper-Kähler $\leftrightarrow H_7$ is Tri-Sasaki \leftrightarrow N=3 susy

To find supersymmetric deformed solutions using Lunin and Maldacena need examples with a $U(1)^3$ isometry that preserve some supersymmetry.

* Homogeneous examples

Weak G_2 :

N(k,l)=SU(3)/U(1)Squashed 7-sphere

Sasaki-Einstein:

Q(1,1,1) -
$$S^1$$
 bundle over $S^2 \times S^2 \times S^2$
M(3,2) - S^1 bundle over $CP^2 \times S^2$

tri-Sasaki:

N(1,1)

* Inhomogeneous Examples

Our construction of D=5 SE $Y^{p,q}$ can be generalised to all odd dimensions. For D=7 we find infinite new families of cohomogeneity one Sasaki-Einstein manifolds that generalise M(3,2) and Q(1,1,1).

Deformed solutions:

Tri-Sasaki:

Has an exactly marginal deformation that breaks $N=3 \rightarrow N=1$

Sasaki-Einstein:

M(3,2), Q(1,1,1) and co-homogeneity one generalisations:

All have exactly marginal deformations that preserve N=2 susy

Weak G_2 :

N(k,l)=SU(3)/U(1) and squashed 7-sphere Both have exactly marginal deformations that maintain N=1 susy

Field Theory

For $AdS_5 \times X_5$ solutions of type IIB with $U(1) \times U(1)$ isometry, Lunin and Maldacena argued (using string field theory) that the dual version of the deformed geometries are obtained by adding some phases $e^{i\pi\gamma}$ into the Lagrangian.

In some cases this leads to a modified superpotential.

$$AdS_5 imes T^{1,1}$$
 [Klebanov, Witten]

$$SU(2)^2 \times U(1)_R$$
 global symmetry

 $SU(N)^2$ quiver gauge theory

$$A_i$$
 in (2,1) and (N, \bar{N})
 B_i in (1,2) and (\bar{N}, N)
 $W = \epsilon^{ij} \epsilon^{kl} Tr(A_i B_k A_k B_l)$

Chiral primaries:

$$Tr(A_{i_1}B_{j_1}...A_{i_k}B_{j_k})$$
 symmetrised over $SU(2)$ indices, i.e. in $(k+1,k+1)$, and $\Delta=3k/2$

$$\gamma$$
-deformation: Lunin and Maldacena $W \to Tr(e^{i\pi\gamma}A_+B_+A_-B_--e^{-i\pi\gamma}A_-B_+A_+B_-)$

For small γ :

$$\Delta W \propto Tr(A_{+}B_{+}A_{-}B_{-} + A_{-}B_{+}A_{+}B_{-})$$

Unique $\Delta = 3$ chiral primary which breaks $SU(2)^2 \rightarrow U(1) \times U(1)$.

For the $AdS_4 \times H_7$ solutions of D=11 we know much less about the field theories living on the M2-branes which are strongly coupled gauge theories in the IR.

Nevertheless we have some understanding of the Q(1,1,1), M(3,2) [Fabbri, Fre, Gualtieri, Reina, Tomasiello, Zaffaroni, Zampa] and N(1,1) [Billo, Fabbri, Fre, Merlatti, Zaffaroni] Cases.

Chiral spectrum agreeing with Kaluza-Klein modes.

Supersymmetric 5-cycles agreeing with baryons (we did the N(1,1) case).

In addition we can identify γ -deformation, for small γ by finding the unique superpotential that is:

Chiral with $\Delta = 2$ Preserves $U(1)^3$ global symmetry.

$$AdS_4 \times Q(1, 1, 1)$$

 $SU(2)^3 \times U(1)_R$ global symmetry

 $SU(N)^3$ quiver gauge theory

$$A_i$$
 in (2,1,1) and $(N, \bar{N}, 1)$ B_i in (1,2,1) and $(1, N, \bar{N})$ C_i in (1,1,2) and $(\bar{N}, 1, N)$

No superpotential!

Chiral primaries:

 $Tr(ABC)^k$ symmetrised over all SU(2) indices, i.e. in (k+1,k+1,k+1), and $\Delta=k$

Note here we must assume that other SU(2) reps decouple in the IR.

For small γ , what is superpotential deformation?

 $Tr(ABC)^2$ has $\Delta = 2$ and is in (3,3,3) rep, which has an element that preserves $U(1)^3$. Unique.

Analogous story for M(3,2) and N(1,1) case.

$AdS_4 \times M(3,2)$

 $SU(3) \times SU(2) \times U(1)_R$ global symmetry

 $SU(N)^2$ quiver gauge theory

$$U^i$$
 in (3,1) and V^A in (1,2) and

No superpotential.

Chiral primaries:

 $Tr(U^3V^2)^k$ symmetrised over all $SU(3)\times SU(2)$ indices, $\Delta=2k$

Again we must assume that other $SU(3) \times SU(2)$ reps decouple in the IR.

For small γ , what is superpotential deformation?

 $Tr(U^3V^2)$ has $\Delta=2$ and is in (10,3) rep, which has an element that preserves $U(1)^3$. Unique.

Conclusions

Classifying SUGRA solutions is a profitable endeavour. More to do on AdS side:

- \star Gravity duals for more general deformations for e.g. $AdS_5\times S^5$?
- \star Field theories for $AdS_4 \times Y_{SE}$ solutions of D=11 with Y_{SE} generalising Q(1,1,1) and M(3,2). Check consistency with deformations.
- \star Field theories for N=1 AdS_4 solutions of D=11 e.g. $AdS_4 \times H_7$ when H_7 is weak G_2 .
- * Could classify AdS_n for other n in type IIB/D=11.
- ★ New SE manifolds of [Cvetic, Lu, Page, Pope]
- * Geometries describing renormalisation group flows between different field theories?
- * Analogue of Calabi's theorem?