
The Canadian Fire Danger Rating System: its use and interpretation

Mike Wotton
Canadian Forest Service
Great Lakes Forestry Centre
mike.wotton@utoronto.ca

CFFDRS

- The Fire Weather Index System (FWI)
 - Fuel moisture in a standard stand
 - Relative fire behaviour over a region
- The Fire Behaviour Prediction System (FBP)
 - Stand specific, quantitative fire behaviour

CFFDRS – basic use

• FWI

- Used to assess fire potential for daily operational planning
 - Estimating fire occurrence, preparedness planning, detection planning, prevention (e.g., restricted fire zones)

• FBP

- Used to make location specific predictions of fire behaviour in a range of situations
 - e.g., fire suppression activities, fire monitoring, PB planning and execution, fire line safety

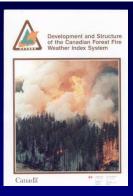
- The system is based on models built from field experimentation
- Field research began in the early 1930's in Ontario
 - In stand measurements (focus on pine stands)
 - Moisture content
 - Ignition sustainability

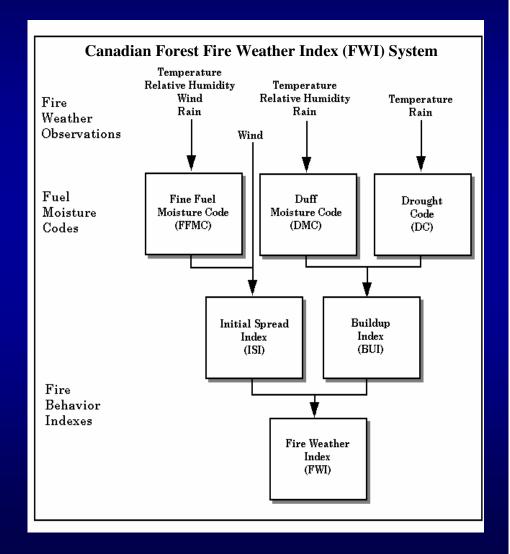
- Tracer Index
 - Moisture of the top layer of fine surface fuels (needles, small twigs, leaves)
 - Initially based on direct measure of evaporation (late in the day)
 - then based on noon weather
 - Similar accuracy, earlier obs.

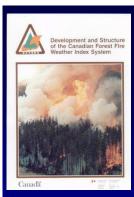
- Hazard Index tables were developed
 - Indicated ease of ignition and vigor of spread on a common scale 0 to 16
- initially developed for
 - pine, hardwood and grass
- then expanded to Eastern Canada
 - Slash

- In 1939 through 1961 test fire program expanded across the country
 - Range of important forest types
 - Aspen, mixedwood, pine, spruce, fir, grassland
 - Range of stand closures

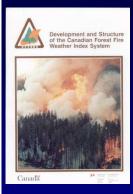
- Test fires
 - Ignited point fires instand with matches
 - occasionally small campfires used
 - Over 2 minutes vigor of ignition, flame length, etc were measured
 - Over 20,000observations

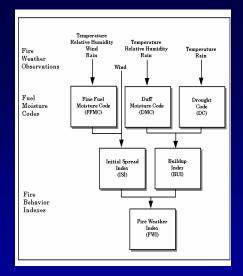


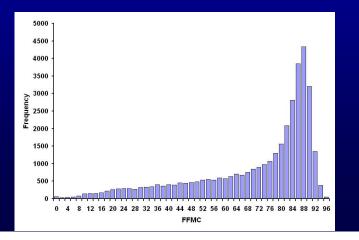


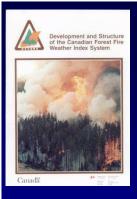

- Regional research lead to numerous fire hazard and danger systems across the country
 - All relied on a Tracer Index and a drought factor and reported on the same 0 to 16 scale
- In late 60's a "universal system" was proposed
 - All agencies across would use the same common base system
 - but interpret output regionally

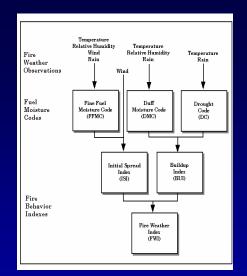
This is basically the national system we use today

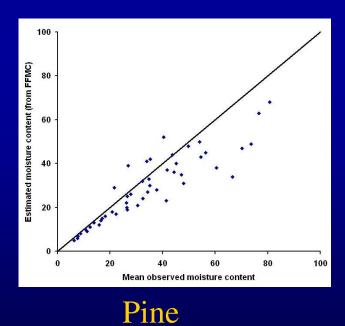

- Tracks moisture (in three layers) and fire behaviour potential in a 'standard' closed pine stand
 - Based on solar noon observation of Temperature, RH, Wind speed and rainfall

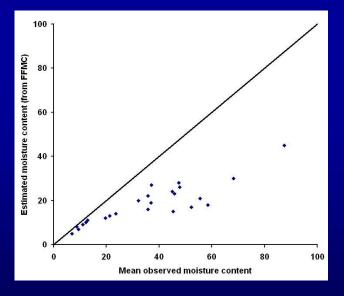


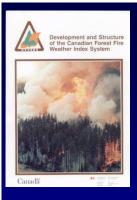

- Moisture Code values are transformed such that high values indicate high fire danger
 - However each is a basic moisture exchange model that follows the form

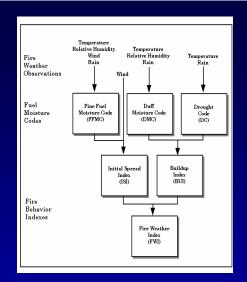

$$\frac{MC_N - EMC}{MC_{N-1} - EMC} = e^{-k \cdot t}$$

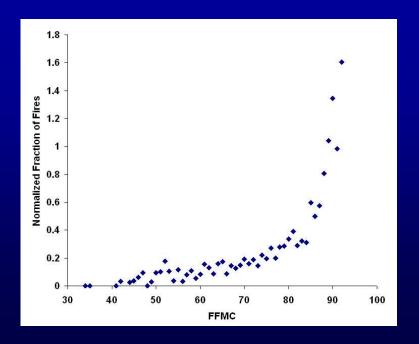


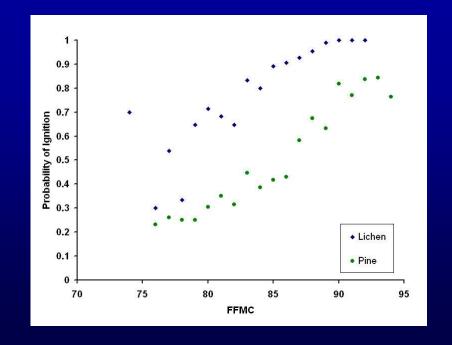

- The Fine Fuel Moisture Code (FFMC)
 - Moisture content of the
 layer of surface litter (fuels
 that carry surface spread) on top
 of a decaying organic layer
 - Response time of layer is about 2/3 day

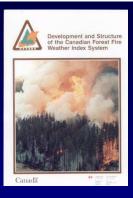





• FFMC versus observed moisture

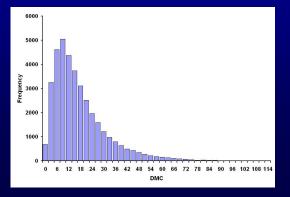

Aspen

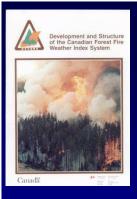




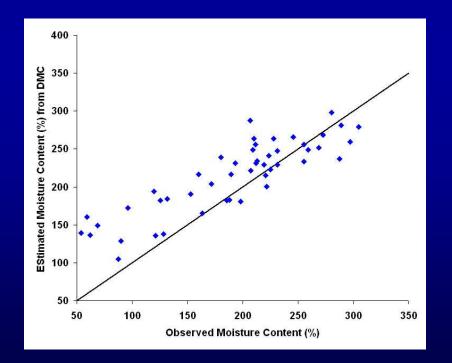
• FFMC

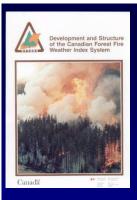
 Used as an indicator of ease of ignition and spread of a fire

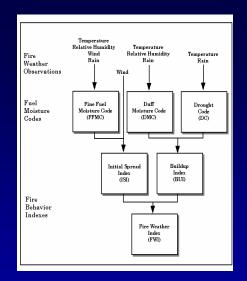




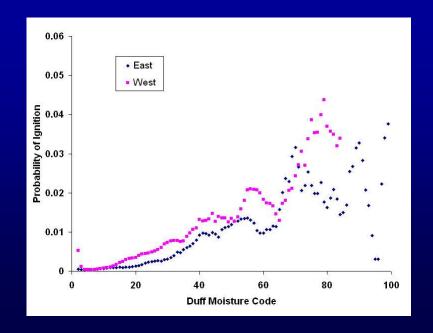
- Weather Observations
- The Duff Moisture Code (DMC)
 - Moisture content of top of the organic layer (top 7 cm)
 - Bulk density 5 kg/m²
 - Response time ≈15 days

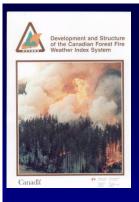

Fire Behavior

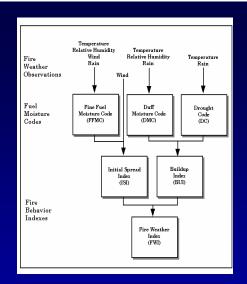

Fire Weather Observations


Fuel Moisture Codes

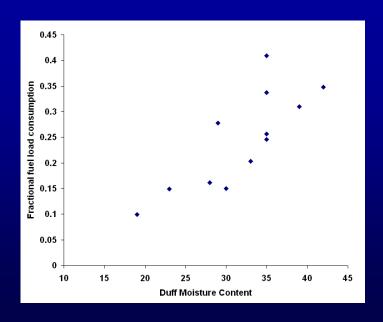
Fire Weather Index (FWI)

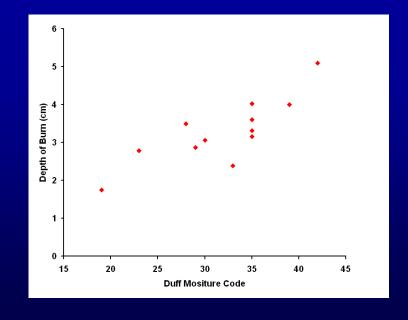


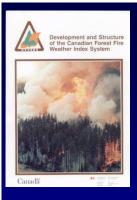


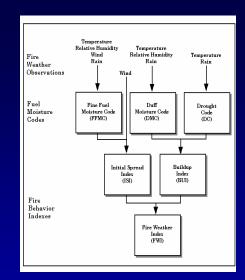

• DMC

 Used as an indicator of receptivity of the forest floor to ignition from lightning

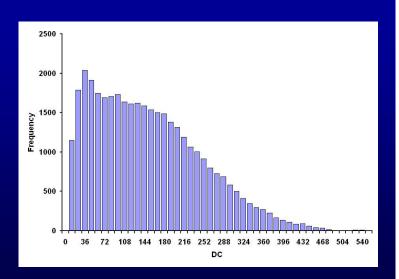


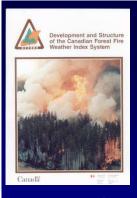


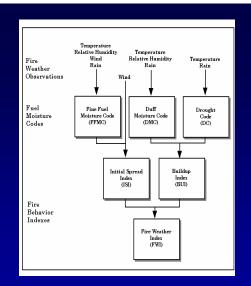


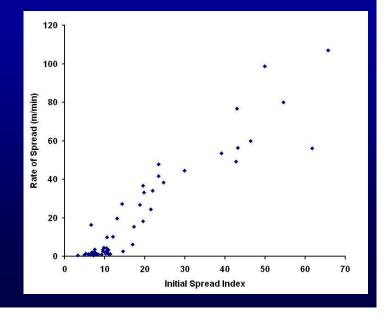

• DMC

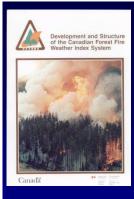
 Is sometimes used by modellers as a predictor of fuel consumption in specific stands as well

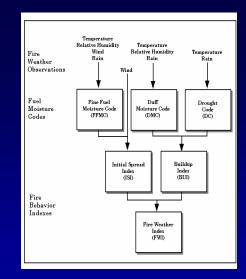




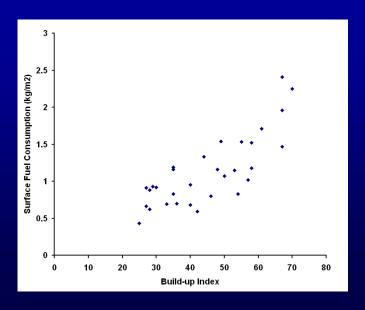


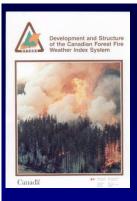

- The Drought Code (DC)
 - Moisture content of large woody fuels and deep organic layer (approximately 7 to 17 cm depth)
 - Bulk density if 25 kg/m²
 - Response time ≈53 days
 - Used as an indicator of difficulty of suppression
 - Sustained deep smouldering

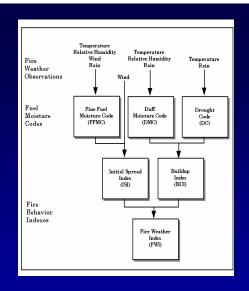




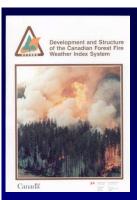
- The Initial Spread Index (ISI)
 - Combines FFMC and wind speed to create a unitless index of potential Rate of Spread (ROS)
 - Used as a general indicator of rate of spread potential across a region.
 - Explicitly correlated with ROS for multiple forest types in the FBP System



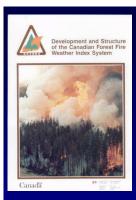




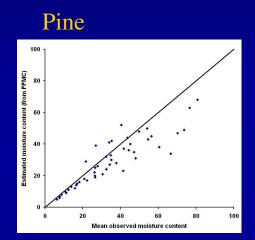
- The Build-up Index (BUI)
 - a simple combination of the DMC and DC
 - used as a unitless indicator of potential fuel consumption

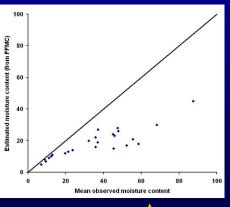


- The Fire Weather Index (FWI)
 - Combines the ISI and the BUI
 (integrating potential spread and potential consumption)
 - A unitless index of the potential intensity of a spreading fire.



- Codes and indices are generally assigned qualitative ranges by each province (and sometime within regions in a province)
 - Based on regional climate, fuels and fire activity



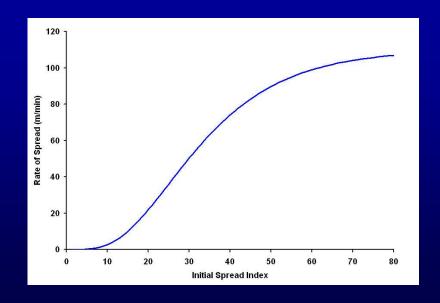

Usage notes

 FWI system outputs have been found to be well correlated with fuel moisture and fire activity over a wide range of forest types, however....

In terms of their absolute values, they are meant to be interpreted locally.

e.g., A FFMC of 90 in Pine in northwest
 Alberta is not the same as a FFMC of 90 in
 Aspen eastern Ontario

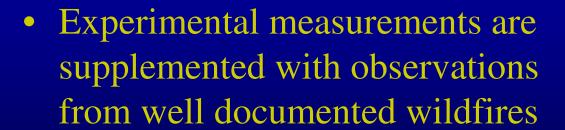
Aspen



- Provides quantitative predictions of fire behaviour for 16 major forest fuel types across Canada
 - Pine (red, white, jack (immature and mature), lodgepole, ponderosa)
 - Spruce (upland and lowland)
 - Deciduous
 - Mixedwood (spring and summer, with and without spruce budworm damage)
 - Grass (standing and matted)
 - Slash

- Basic physical reasoning is used to develop the form of empirical models
 - e.g. the rate of spread/ ISI models are built using a single S-shaped function that incorporates the concept of dual equilibrium rate of spread (surface and crown)

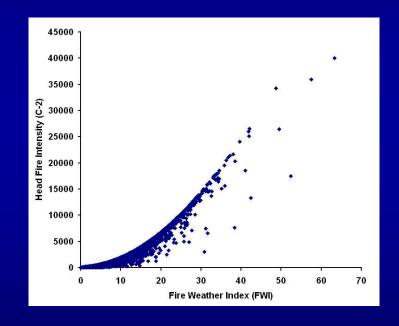
$$ROS = a \cdot (1 - e^{-b \cdot ISI})^c$$


- ...Stand specific models are then built from experimental burning projects carried out in the field
 - Blocks cut out of a forest stand
 - Intensively sampled fuels (load , stand density)
 - Ignitions under a range of moisture and wind conditions
 - Stand average rate of spread estimated from coarse scale behaviour
 - average fuel consumption calculated postburn based on point measurements within the stand

- Experimental burning projects have been carried out across Canada since the late 1960's
 - over 400 experimental fires

- System Inputs
 - Fuel Type, Date, Latitude, Longitude
 - FFMC, BUI, wind speed, wind direction
 - Slope, slope azimuth, elevation
 - Line or point ignition
 - Duration of fire growth estimate

- Major outputs for each forest type
 - Surface and crown fuel consumption (SFC and CFC)
 - Rate of spread (ROS)
 - Head Fire Intensity (HFI)
 - Fire type
 - Surface, Intermittent Crown, Crown



Analogues to the FWI System

• BUI Ł SFC

• ISI Ł ROS

• FWI Ł HFI

- Other outputs
 - Crown Fraction Burned
 - Length-to-breadth ratio for elliptical growth
 - Back and flank fire rates of spread (and intensity)
 - Elliptical area, perimeter and perimeter growth rate

Issues around the field experimentation and empirical model building approach

- Advantages
 - Predicted fire behaviour is realistic and does not need to be scaled
- Disadvantages
 - Adapting the system to new forest types is difficult
 - Must measure spread and build a new empirical model

Usage notes

- The FBP System
 - Uses standard fuel loads (surface and crown) for most fuel types
 - Bases predictions on modelled fuel moisture (FFMC, BUI, foliar moisture) not observed moisture in any particular fuel element
 - Predicts average fire behaviour
 - There is in reality a lot of fine scale variability in fuel consumption, rate of spread and fire intensity

- Usage notes cont'd
 - The FBP System was designed to provide guidance to fire managers who would use its output to supplement their experience and judgment, based on their knowledge of each situation.
 - e.g., a fire in a forest type that differs from a standard FBP fuel type significantly

Fire Growth

- The FBP System's spread equations are used as the basic driver of fire growth models, using an elliptical growth model along with spatial forest fuels information
 - e.g. PROMETHEUS: the Canadian Wildland
 Fire Growth Model

(http://www.firegrowthmodel.com/)

Accessory Fuel Moisture System

- A system of moisture content models that fit within the framework of the CFFDRS
 - Hourly FFMC
 - Diurnal FFMC
 - Stand specific DMC adjustments (BC)
 - Sheltered Duff Moisture Code (SDMC)

CFFDRS

Some ongoing projects and future development

- Improved crown fire behaviour models (ICFME)
- Rate of spread models in MPB killed forest
- Refinement of mixedwood fire behaviour models
- Development of stand specific moisture content calibrations with FFMC
- Open/exposed grass moisture model (and refined ROS models)
- Development of fuel load specific fuel consumption models
- Probability of ignition models for a range of forest floor types

CFFDRS Primary Documentation

• FWI

C.E. Van Wagner (1987) The Development and
 Structure of the Canadian Forest Fire Weather Index
 System. Canadian Forest SERvice, Forestry Technical
 Report 35.

FBP

 Forestry Canada Fire Danger Group (1992) Development and Structure of the Canadian Forest Fire Prediction System. Forestry Canada, Information Report ST-X-3

CFFDRS Primary Documentation

- Interactive training courses (CD)
 - Understanding the FWI System
 - Canadian Fire Behaviour Prediction System
 - Principles of Fire Behaviour

http://www.ubcpress.ubc.ca/

The Canadian Fire Danger Rating System: its use and interpretation

Mike Wotton
Canadian Forest Service
Great Lakes Forestry Centre
mike.wotton@utoronto.ca