Some Analyses of New Brunswick Forest Fire Data

Rolf Turner

Department of Mathematics and Statistics
University of New Brunswick, Fredericton, N. B., Canada

Acknowledgments

Special thanks are due to

- Jeffrey Betts of the N. B. Department of Natural Resources who provided the data sets and helped me to understand their intricacies.
- Jonathan Beaudoin of the U.N.B. Department of Geodesy and Geomatics who gave me a C program to convert latitude and longitude into New Brunswick Double Stereographic Projection coordinates.

Further Acknowledgments

I owe enormous gratitude to Adrian Baddeley of the University of Western Australia, from whom I learned practically everything I know about spatial point processes.

I must emphasize however that any flaws or errors in the following presentation are attributable entirely to my own inadequaciesand NOT to the fact that I was

Baddeley taught!

Themes — Explicit and Implicit

- The data; much cleaning required; treated year-by-year.
- The importance of good convenient software; the importance of simulation.
- The observation window; the coordinate system.
- EDA; data plots; intensity plots; K functions.
- Spatial models; modelling software; model syntax.
- Model diagnostics; residual plots.
- Conclusions meager; data set is rich; surface barely scratched.

Organizing the Data

- Complete fire records of the N. B. Department of Natural Resources for the years 1987 through 2003.
- Excel spreadsheets, one for each year.
- Each had 97 columns and between 286 and 654 rows (i.e. fires).
- Spreadsheets → R data frames.
- Considerable cleaning was needed; still more needed.
- Many missing values and anomalous entries.
- Decisions needed as to what variables to retain.

A Slightly Puzzling Plot

- Crucial information: *location* of the fires.
- Given in latitude and longitude, like this:

	latitude	longitude
1	4554	6731
2	4600	6732
3	4618	6544
4	4612	6730
5	4455	6660
6	4519	6707

- Eagerly plotted raw latitude and longitude from the 2000 data.
- Result bizarre; took me a while to see what I'd done.

A REALLY WRONG Plot of The Year 2000 N. B. Fires

What's the explanation?

The spatstat Package

- The spatstat package was used for all of my analyses.
- Details see Adrian Baddeley and Rolf Turner (2005). spatstat: an R package for analyzing spatial point patterns. Journal of Statistical Software 12 no. 6, pp. 1–42, URL: http://www.jstatsoft.org.

The Observation Window

- We need an observation window in order to properly specify a point pattern.
- Here we need a map of New Brunswick.
- GIS → "shapefiles" → collection of polygons → mask type window.
- Mask = pixel array of TRUE/FALSE values.
- Used relatively fine (500 \times 500) pixellation.
- Shapefiles to polygons: used Roger Bivand's maptools package from CRAN).

The Observation Window as a Mask

New Brunswick Map as a "Mask"

Outsiders

- Constructed window ⇒ could construct patterns.
- But many points plotted outside of the observation window.
- Several reasons:
 - 1. Discretization of the window.
 - 2. Relative coarseness of fire locations; to nearest minute, ≈ 1 kilometer.
 - 3. Data entry errors.

Adjusting the Outsiders

- Shifted points which were "mildly" out of place to nearby locations inside the window.
- Deleted points which were "wildly" out of place. (Assumed data entry error.)
- Many points borderline; tossed a coin.
- Some examples follow.

Mildly

Borderline

Data Plots

- Data now in some semblance of shape.
- Look at them year-by-year (all fires).
- Then narrow down to forest fires only. (Data include "grass", "dump", and "other", as well as "forest" fires.)
- Look at aggregate over all available years; estimate spatial *trend* from the aggregate.
- Estimation done by applying a smoothing kernel.

All Fires — Year by Year

Forest Fires — Aggregate

All New Brunswick Forest Fires

Spatial Trend

Lightning Fires

Interesting to examine "naturally" caused fires separately.

Fires Started by Lightning

Lightning Trend

Intensity Estimate for Lightning Fires

Second Order Effects

- Trend or "inhomogeneity" only a part of the story.
- ightharpoonup Process not Poisson \Rightarrow dependence or "interaction".
- Simplest manifestation: either attraction (aggregation or clustering) or repulsion ("regularity").
- In detecting such interaction Ripley's K function is the basic tool.

Interpreting the K Function

- Basic idea:
- Constant intensity Poisson process, ("complete spatial randomness", "CSR") $\Rightarrow K(r) = \pi r^2$.
- Attraction (with impact at distance r) $\Rightarrow K(r)$ larger than under CSR.
- Repulsion $\Rightarrow K(r)$ smaller than under CSR.

Estimating the K Function

- "DO NOT TRY THIS AT HOME."
- Looks simple; edge effects strongly biasing; allowing for this is subtle.
- Some very clever people (e.g. Brian Ripley, Peter Diggle, Adrian Baddeley) have put a great deal of thought and effort into getting it right.
- Use software written by one of these experts; don't roll your own!

The K Function for the Year 2000 Data

For example, an estimate of the K function for the N. B. fires year 2000 data looks like:

The K Function and Trend

- Both estimates lie entirely outside far above the critical envelope.
- Plot seems to shout "attraction" very loudly.
- But this could be due to regions of high concentration in the trend.
- Spatial trend and interaction are in theory confounded.

The Inhomogeneous K Function

- Cannot (strictly) be distinguished from looking at a single realization of the process.
- Here we're lucky; we have multiple realizations.
- Hence have an estimate of trend (already seen).
- Hence can calculate the *inhomogeneous* K function of Baddeley and Waagepetersen.

Inhomogeneous K Function for the Year 2000 Data

Modelling the Data

- Focus on a purely spatial approach.
- Point of view: each year "Nature" puts down a pattern of fire locations in the observation window = New Brunswick.
- Basic theoretical assumption: these patterns are realizations of a Gibbs point process.
- Haven't (yet) incorporated time.
- There is at least some insight to be gained from the purely spatial approach.

Fitting Models in spatstat

- Model fitting function: ppm() ("point process model").
- Method: maximum pseudolikelihood.
- (Huang-Ogata method also available; not yet thoroughly tested.)
- Fits models of exponential family form.
- Models must be expressed in terms of their Papangelou conditional intensity functions.

Model = Trend + Interaction

Assume the Papangelou conditional intensity function has the form

$$\lambda(u,\underline{x}) = \exp\{\phi^{\mathsf{T}}b(u) + heta^{\mathsf{T}}S(u,\underline{x})\}$$

- $m{\phi}^{\mathsf{T}}b(u) = \textit{trend} \; \mathsf{component}.$
- $m{\theta}^{\mathsf{T}} S(u,\underline{x}) = \textit{interaction} \text{ component.}$
- Syntax of ppm() based on this decomposition.
- Syntax analogous with that of glm()/GLIM.
- "trend" <---> "linear predictor", and "interaction" <---> "family".

Trend Only Model

- Simplest model: trend only.
- Estimate of trend available.
- Exponential family model: assume the intensity for the given year is proportional to the overall trend.

Using an Offset Term

Explicitly:

$$\lambda(u, \underline{x}) = \lambda(u) = \beta \tau(u) = \exp\{\phi + \log(\tau(u))\}$$

- $\phi = \log(\beta)$ only parameter to be estimated.
- ullet $\log(au(u))$ called "offset" term. ([Generalized] linear modelling terminology.)

Trend Only Model (Cont'd.)

spatstat syntax:

- intens = non-parametric estimate of the over-all trend.
- X.00 = point pattern object = forest fire locations for the year 2000.

The Resulting Fit

"print method" for ppm objects in spatstat produces:

```
[Stuff omitted.]

Fitted coefficients for trend formula:

(Intercept)

-2.928027
```

- Note $\exp(-2.928027) = 0.0535$, a bit less than 1/16.
- Indicates number of fires for the year 2000 is a bit less than average.
- Which is indeed the case.

Diagnostics

- Output doesn't say whether the model is actually sensible.
- Know it isn't the K function plots said there is interaction as well as trend.
- Goodness of fit is often assessed via residual plots.
- These are now available, for point pattern models, in spatstat.
- Lurking variable plot: information about fit of trend component.
- Quantile-quantile plot: information about fit of interaction component.
- Some other plots are available.

Lurking Variable Plot — Trend Only

Quantile-quantile Plot — Trend Only

A Model With Interaction

- "Knew" that the QQ plot would say "No."
- Try adding a Geyer type interaction to model attraction.
- "Geyer" generalizes "Strauss".
- Adds "saturation" parameter; makes model well-defined for $\gamma>1$.
- Hence attraction as well as repulsion can be modelled.
- In spatstat:

The "Irregular" Parameters

- Interaction radius and saturation parameter are "irregular" parameters.
- These do not conform to the exponential family model.
- Not estimated by ppm().
- Must be estimated/guessed at by other means and pre-specified.
- Guessed at interaction radius from (inhomogeneous) K function plot; K function estimate outside of critical envelope for r < 10000.

The Saturation Parameter

- Guessed at saturation parameter "s" via rough "profile pseudolikelihood" procedure.
- Fitted models with interaction Geyer(10000,s) for s in $\{1,2,\ldots,10\}$.
- Plot of "profile" shown on the next slide.

Profile Pseudolikelihood for "s"

Lurking Variable Plot — Trend + Geyer

QQ Plot — *Trend* + *Geyer*

Simulated Data

Simulated Forest Fires

Lurking Variable Plot for Simulated Data

Simulated from Trend + Geyer; fitted Trend.

QQ Plot for Simulated Data

Simulated from Trend + Geyer; fitted Trend.

Lurking Variable Plot for Simulated Data

Simulated from Trend + Geyer; fitted Trend + Geyer.

QQ Plot for Simulated Data

Simulated from Trend + Geyer; fitted Trend + Geyer.

Comments on the Trend + Geyer Model

- Fit not very good.
- OTOH, maybe not too bad compared with fit to simulated data.
- Seem to need to do better with trend as well as with interaction.
- Shouldn't expect wonders of the attempted model.
- It was totally "ad hoc".
- A "good" model would use the temporal/sequential nature of the data.
- As noted, temporal information is available, but not yet brought in to play.

Question on Spatio-Temporal Modelling

- Interesting question: how to relate a spatio-temporal model to a purely spatial model?
- Can we formulate a spatio-temporal model so as to infer a reasonable Gibbs model for the aggregate, end-of-year, process?
- "Reasonable" = having a tractable (computable)
 Papangelou conditional intensity function.

Further Desiderata for Models

- Make use of "background" information on terrain and vegetation.
- May be possible to get such information from a GIS.
- Make use of weather conditions.
- Some weather information available in the N. B. DNR data.
- However much of this information consists of "missing values" presumably unrecorded.
- Obtain weather information from Environment Canada?

Cox Process?

- The Cox process seems intuitively plausible as a model for these data.
- It is interesting in theory at least.
- Fitting presents substantial challenges.
- Not clear how much progress can be made.
- Possible interplay between Cox process idea and spatio-temporal modelling?
- E.g. think of the underlying Gaussian random field as varying continuously in time.
- Is there any real sense or any practical mileage in this?

Conclusions

- Substantial evidence of "attraction" between fires for the year 2000 data.
- But a Cox process might provide a better description of the data than an explicit model for attraction.
- [Looking at other years seems to support this.]

Homework

- Proceed with data cleaning; resolve anomalies, fill in missing data via discussions with N. B. DNR people.
- Obtain, and implement the use of, data on terrain, vegetation, and weather conditions.
- Formulate and fit appropriate spatio-temporal models to the data.
- Investigate relationships between spatio-temporal models and purely spatial models for the yearly aggregate.
- Investigate fitting a Cox process to the data; develop practical methods for this.
- Investigate possible interplay between Cox processes and spatio-temporal modelling.
- Bring peace and harmony to mankind.

Final Remarks

- Not a lot of information squeezed out of the data so far.
- However, as they say on election night, "It is early days yet."
- This is a rich collection of data.
- Lots of scope for experimenting with ideas for point process modelling.
- These data will be made generally available as part of the spatstat package (obtainable from CRAN) in the near future.

Appendix: Inhomog. K Function Plots (1)

Appendix: Inhomog. K Function Plots (2)

Appendix: Inhomog. K Function Plots (3)

Appendix: Inhomog. K Function Plots (4)

