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In this presentation:

− Introduce the notion of
set-indexed martingales,

− Describe (potential) theoretical tools
for modelling complex random
spatio-temporal processes:
(1) Central Limit Theorems
(2) Set-Indexed Ito integral
(3) Set-Indexed Stopping Lines
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Set-Indexed Processes

A set-indexed process is any collection

X = {XA ;A ∈ A}
of random variables. Roughly,

XA = observation over the region A

A is a collection of “good” subsets
of T , a fixed space (eg. T ⊆ IRd).
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Simplest example:
T = [0,∞)dwith the lower rectangles,

A = {[0, z] ; z ∈ T} .
Identifying points, z with sets, [0, z],
we can capture:

(1) “Time-indexed” processes:

X = {Xt ; t ∈ [0,∞)}

(2) “planar” processes:

X = {Xs,t ; s, t ∈ [0,∞)}
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Other “good” examples on T = [0,∞)d:
(convex) lower layers:
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Early set-indexed work in 1980’s:
Empirical Processes
(K. Alexander, R. Dudley, R. Pyke,
et al.)

T = IRd, any A ⊆ B(IRd)

Take an i.i.d. sample from dist’n,

F : IRd→ [0, 1]

Y1, Y2, · · · , Yn ∼ F and define:

X(A) = n−1 ∑n
i=11I[Yi∈A]

= n−1 · (# of iwith �Yi ∈ A)
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Set-Indexed Martingales

Need additional structure on A:

• A,B non-empty⇒ A ∩B �= ∅,
• ∃ gn : A → An (A1 ⊆ A2 ⊆ · · ·)

s.t. gn(A) ↓ A every A ∈ A
Define collection of “rectangles”,

C = {A \ ⋃k
i=1Ai ;A,Ai ∈ A}

Can extend X to C (“increments”):

XC = XA −
∑

i
XA∩Ai + · · ·

(i.e., inclusion-exclusion).

Also need an information structure,
“filtration”, {FA ;A ∈ A}. Roughly:

FA = “info. up to the set A”
(= σ{XB ;B ⊆ A} )
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Definition X = {X(A) A ∈ A} is

(a) additive if X has unique additive
extension to C,

(b) adapted if XA is FA-measurable
for each A ∈ A

(c) a strong martingale if X is addi-
tive, adapted and, given C ∈ C,

E[XC|G∗C ] = 0

i.e.,E[incr. over C|history of C] = 0.

G∗C =
∨{FA ;A ∈ A, A ∩ C = ∅}
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Examples of Strong Martingales:

•Weighted empirical process
(Burke 98 for rectangles;
Ivanoff and S., 99)

Xn(A) = n−1 n∑

i=1
Zi1I[Yi∈A]

(Zi’s are i.i.d. zero-mean weights).

•X − Λ, when X is a spatial (IRd)
Poisson process with intesity Λ
(Ivanoff and Merzbach, 94)
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Set-indexed Brownian motion
(Ivanoff and Merzbach, 96)

B = {BA : A ∈ A} is a set-indexed
Brownian motion if

(BC1
, BC2

, · · · , BCn) ∼ N(0,Σ)

for any C1, · · · , Cn ∈ C where
Σi,j = Λ(Ci∩Cj), Λ a measure on T .

Notes (1) B has “independent
increments”.

(2) If B has “outer-continuous
sample paths”, B a strong
martingale with respect to its
minimal filtration.
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Contact infection model
(Dabrowski, Fang, and Ivanoff, 96).

A tree is growing at each point (n,m)
in a forest. A disease spreads through
the forest. Define:

X(n,m) =




1 tree at (n,m) is infected
0 tree at (n,m) is healthy .

Assumption: Health of tree at (n,m)
depends (cond.) only on the health
of trees at (n− 1,m) and (n,m− 1).

X(A) =
∑

(n,m)∈A
X(n,m) , A ∈ A

whereA = { lower rectangles in [0,∞)2},
or { lower layers in [0,∞)2}.
When properly “centered”,X a strong
martingale with respect to its
minimal filtration.
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1. Central Limit Theorems

Ivanoff and S., 1999
Appeared in: Ivanoff and Merzbach
2000, Set-Indexed Martingales, Mon-
graphs on Statistics and Applied Prob-
ability 85, Chapman & Hall / CRC.

Conditions on sequence (Xn) of
set-indexed martingales ensuring

Xn→ B

“in distibution”, where B is a
set-indexed Brownian motion.

Moral: We can approximateXn’s with
“simpler” process, B.
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First ... need set-indexed analogue
of quadratic variation.

Definition (S. 98).
A process X∗ = {X∗(A) : A ∈ A} is
a *-quadratic variation of a strong
martingale X = {X(A) : A ∈ A} if

E[X(C)2−X∗(C) | G∗C ] = 0 each C ∈ C

Notes (a) Since X(C)2 �= X2(C),
X2 − X∗ is not necessarily a strong
martingale, even if X∗ is adapted.

(b) Conditions for existence and
uniquness of “predictable” *-quadratic
variation in S. 98.
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Example If B = {B(A) : A ∈ A}
is an A-indexed Brownian motion
with variance measure Λ, then Λ is
a *-quadratic variation of B.

Example (Ivanoff and S., 99).
A *-quadratic variation for weighted
empirical process,
Un = 1

n1/2
∑n
k=1 Zk · 1I [�Yk ∈ A],

U∗n(A) =
1

n

n∑

k=1

∫

R(�Yk)∩A
hF (t) dF (t)

whereR(�Yk) = ∏d
i=1[0, Y

i
k ] and hF (t) =

F (∏d
i=1[ti, 1])−1.
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Theorem (S. 98).
If X1, X2, · · · are square-integrable
strong martingales with correspond-
ing *-quadratic variationsX∗1 , X∗2 , · · ·
such that (i)

E[ |Xn(T )|2+δ ] ≤ K < ∞
for some δ > 0 and (ii) “jumps of
Xn become asymptotically negligi-
ble as n → ∞ and (iii) there is in-
creasing continuous Λ : A → [0,∞)
such that

X∗n(A) P−→ Λ(A) as n→∞
for each A ∈ A, then Xn →D B
where B is set-indexed Brownian
motion with variance measure Λ.
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Asymptotic rarefaction of jumps

max
0≤t≤1

|∆Xn(f (t)) | P−→ 0 as n→∞

for every “flow” f : [0, 1] → A(u)
where A(u) = {finite unions in A}.
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Definition of “Xn→D X” for
set-indexed process.

Either:

(a) semi-functional convergence
f (Xn)→D f (X) on D[0, 1] for every
“flow”, f : [0, 1]→ A(u), or

(b) functional convergence
measures on D(A) induced by Xn’s
converge weakly to that induced on
D(A) by X .
Requires restrictions on “size” ofA.
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2. The Set-Indexed Ito Integral

Saada & S., 2004,
in Journal d’Analyse Mathematique

Generalizes the classic notion of
the Ito stochastic integral to the
set-indexed setting.
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Recall: classic situation:
Given a “time-indexed” martingale,

M = {Mt ; t ∈ [0,∞)}
and a “predictable” process,

X = {Xt ; t ∈ [0,∞)},
can define the Ito integral by

∫ t
0 Xs dMs = lim

n

[t2n]∑

k=1
Xk−1

2n


M k

2n
−Mk−1

2n




(“random” Riemann-Stieltjes integral)
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Set-indexed situation
Motivated by planar Ito integral
(Cairoli and Walsh, 75).

Integrators: strong martingales.

Integrands: Predictable processes?

Def’n. Predictable rectangles,

P0 = {F × [C] ;C ∈ C , F ∈ GC}
where, given C = A \ ⋃k

j=1Ai ∈ C,

[C] = [∅, A] \ n⋃

i=1
[∅, Ai]

with [∅, A] = {B ∈ A ;B ⊆ A} and

GC =
⋂{FA ;A ∈ A, A ∩ C �= ∅}

(weak history at C).
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That is: F × [C] ⊆ Ω×A in P0 iff F
is in weak history of rectangle C.
(Close to that in: Ivanoff et al. 93)

To illustrate: IfA = {[0, z] ; z ∈ [0,∞)d},
then identifying z’s with [0, z]’s:

F × [C] ≡ F × (z′, z]

d = 1 (time-ind.) Reduces to:

d = 2 (planar) Reduces to:
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Def’n. (i) TheA-predictable σ-algebra

P = σ(P0) on Ω×A .
(ii) X isA-predictable if it’sP-meas.
as a map on Ω×A.

Therefore, ... every “simple process”,

X =
n∑

i=1
αi1IF×[Ci]

(Fi ∈ GCi, each i)

is A-predictable.
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Q: Other predictable processes?

Def’n (Analogue of “left-continuous”).
x : A → IR is outer-continuous at
A ∈ A if, given (An) in A,

An ⊆ A and An→dH A
implies limn x(An) = x(A).

Theorem (Saada and S., 2004)
Every inner-continuous, adapted
process is A-predictable.
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Definition of set-indexed integral:
IfM a strong martingale in L2 and

X =
n∑

i=1
αi1IFi×[Ci]

is simple and A-predictable,
∫
[∅,A]XB dMB =

n∑

i=1
αi1IFi M(Ci∩A)

Bridge to more general integrands:
the set-indexed Ito isometry. Employs:

Def’n. Q = {QA ;A ∈ A} a quadratic
variation ofM if for every C ∈ C,

(i) QC ≥ 0 and

(ii) E[(MC)2|GC ] = E[QC |GC ]

.

Note: GC ⊆ G∗C , hence *-quadratic
variation is a quadratic variation.
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Theorem (Saada and S., 2004)
Given any simple process X ,

E[(
∫
[∅,A]X dM)2] = E[

∫
[∅,A]X

2 dQ] ,

whereQ a quadratic variation ofM .

Therefore, can extend integral to any
A-predictable X for which

||X||M = E[
∫
[∅,T ]X

2 dQ] <∞
Define:

L2
M = {X ∈ P : ||X||M <∞}
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Note that
∫
X dM = {∫

[∅,A]XB dMB ;A ∈ A}
is a set-indexed process.

Properties of set-indexed integral:

(1) ∫ X dM is a strong martingale,

(2) If Q a quadratic variation of M ,
then ∫ X2 dQ a quadratic variation
of ∫ X dM

(3) ξ a stopping set (in sense of Ivanoff
and Merzbach, 95), then

(
∫
X dM)ξ =

∫
1I[0,ξ]X dM

ξ

(the key to localization.)
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3. Set-indexed Stopping Lines

Saada and S., 2005.
To appear in J. of Theoretical Probab.

Provides means of “stopping” a set-
indexed process in a flexible and
general way.

Extends and compliments the notion
of “stopping sets”, ξ, introduced in
Ivanoff and Merzbach, 95.
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Motivation: In the plane ...
(see Merzbach, 80; Merzbach and
Zakai, 87).

Two notions of stopping.
(a) Stopping point: S : Ω→ IR2

+.

(b) Stopping line: λ : Ω → L where
L denotes set of all “decreasing lines”
in IR2

+.
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