Fields Institute Workshop on Forest Fires and Point Processes May 27, 2005

Set-Indexed Martingales: Tools for Multidimensional Stochastic Modelling and Analysis

Dean Slonowsky

Department of Statistics University of Manitoba Winnipeg, Manitoba, Canada

In this presentation:

- Introduce the notion of set-indexed martingales,
- Describe (potential) theoretical tools for modelling complex random spatio-temporal processes:
 - (1) Central Limit Theorems
 - (2) Set-Indexed Ito integral
 - (3) Set-Indexed Stopping Lines

Set-Indexed Processes

A *set-indexed process* is any collection $X = \{X_A; A \in \mathcal{A}\}$ of random variables. Roughly, $X_A =$ observation over the region A

 \mathcal{A} is a collection of "good" subsets of T, a fixed space (eg. $T \subseteq \mathbb{R}^d$).

Simplest example: $T = [0, \infty)^d$ with the *lower rectangles*, $\mathcal{A} = \{[0, z]; z \in T\}.$

Identifying points, z with sets, [0, z], we can capture:

(1) "Time-indexed" processes:

$$X = \{X_t ; t \in [0,\infty)\}$$

(2) "planar" processes: $X = \{X_{s,t}; s, t \in [0, \infty)\}$

Other "good" examples on $T = [0, \infty)^d$: (convex) lower layers:

Early set-indexed work in 1980's: Empirical Processes

(K. Alexander, R. Dudley, R. Pyke, *et al.*)

 $T = I\!\!R^d$, any $\mathcal{A} \subseteq \mathcal{B}(I\!\!R^d)$

Take an i.i.d. sample from dist'n,

 $F : \mathbb{I}\!R^d \to [0, 1]$ $Y_1, Y_2, \cdots, Y_n \sim F \text{ and define:}$ $X(A) = n^{-1} \sum_{i=1}^n \mathbb{I}_{[Y_i \in A]}$ $= n^{-1} \cdot (\# \text{ of } i \text{ with } \vec{Y_i} \in \mathcal{A})$

Set-Indexed Martingales

Need additional structure on \mathcal{A} :

- A, B non-empty $\Rightarrow A \cap B \neq \emptyset$,
- $\exists g_n : \mathcal{A} \to \mathcal{A}_n \ (\mathcal{A}_1 \subseteq \mathcal{A}_2 \subseteq \cdots)$ s.t. $g_n(\mathcal{A}) \downarrow \mathcal{A} \text{ every } \mathcal{A} \in \mathcal{A}$

Define collection of "rectangles",

$$\mathcal{C} = \{A \setminus \bigcup_{i=1}^{k} A_i; A, A_i \in \mathcal{A}\}$$

Can extend *X* to C ("increments"):

$$X_C = X_A - \sum_i X_{A \cap A_i} + \cdots$$

(i.e., inclusion-exclusion).

Also need an information structure, "filtration", $\{\mathcal{F}_A ; A \in \mathcal{A}\}$. Roughly:

$$\mathcal{F}_A = \text{``info. up to the set } A' \\ (= \sigma\{X_B; B \subseteq A\})$$

Definition $X = \{X(A) | A \in \mathcal{A}\}$ is

- (a) *additive* if X has unique additive extension to C,
- (b) *adapted* if X_A is \mathcal{F}_A -measurable for each $A \in \mathcal{A}$
- (c) a *strong martingale* if X is additive, adapted and, given $C \in C$,

 $E[X_C | \mathcal{G}_C^*] = 0$

i.e., E[incr. over C|history of C] = 0. $\mathcal{G}_C^* = \lor \{\mathcal{F}_A ; A \in \mathcal{A}, A \cap C = \emptyset\}$

Examples of Strong Martingales:

 Weighted empirical process (Burke 98 for rectangles; Ivanoff and S., 99)

$$X_n(A) = n^{-1} \sum_{i=1}^n Z_i \mathbb{1}_{[Y_i \in A]}$$

(Z_i 's are i.i.d. zero-mean weights).

 X – Λ, when X is a spatial (IR^d)
Poisson process with intesity Λ (Ivanoff and Merzbach, 94)

Set-indexed Brownian motion (Ivanoff and Merzbach, 96)

 $B = \{B_A : A \in \mathcal{A}\}$ is a <u>set-indexed</u> <u>Brownian motion</u> if

 $(B_{C_1}, B_{C_2}, \cdots, B_{C_n}) \sim \mathbf{N}(\mathbf{0}, \mathbf{\Sigma})$ for any $C_1, \cdots, C_n \in \mathcal{C}$ where $\mathbf{\Sigma}_{i,j} = \Lambda(C_i \cap C_j)$, Λ a measure on T.

Notes (1) *B* has "independent increments".

(2) If *B* has "outer-continuous sample paths", *B* a strong martingale with respect to its minimal filtration.

Contact infection model

(Dabrowski, Fang, and Ivanoff, 96).

A tree is growing at each point (n, m)in a forest. A disease spreads through the forest. Define:

 $X(n,m) = \begin{cases} 1 \text{ tree at } (n,m) \text{ is infected} \\ 0 \text{ tree at } (n,m) \text{ is healthy.} \end{cases}$

Assumption: Health of tree at (n, m) depends (cond.) only on the health of trees at (n - 1, m) and (n, m - 1).

$$X(A) = \sum_{(n,m)\in A} X(n,m), \quad A \in \mathcal{A}$$

where $\mathcal{A} = \{$ lower rectangles in $[0, \infty)^2 \}$, or $\{$ lower layers in $[0, \infty)^2 \}$. When properly "centered", *X* a strong martingale with respect to its minimal filtration.

1. Central Limit Theorems

Ivanoff and S., 1999

Appeared in: Ivanoff and Merzbach 2000, *Set-Indexed Martingales*, Mongraphs on Statistics and Applied Probability **85**, Chapman & Hall / CRC.

Conditions on sequence (X_n) of set-indexed martingales ensuring

 $X_n \to B$

"in distibution", where *B* is a set-indexed Brownian motion.

Moral: We can approximate X_n 's with "simpler" process, *B*.

First ... need set-indexed analogue of *quadratic variation*.

Definition (S. 98).

A process $X^* = \{X^*(A) : A \in \mathcal{A}\}$ is a <u>*-quadratic variation of a strong</u> martingale $X = \{X(A) : A \in \mathcal{A}\}$ if $E[X(C)^2 - X^*(C) | \mathcal{G}_C^*] = 0$ each $C \in \mathcal{C}$

Notes (a) Since $X(C)^2 \neq X^2(C)$,

 $X^2 - X^*$ is not necessarily a strong martingale, even if X^* is adapted.

(b) Conditions for existence and uniquness of "predictable" *-quadratic variation in S. 98. **Example** If $B = \{B(A) : A \in A\}$ is an A-indexed Brownian motion with variance measure Λ , then Λ is a *-quadratic variation of B.

Example (Ivanoff and S., 99).

A *-quadratic variation for weighted empirical process,

$$\begin{split} U_{n} &= \frac{1}{n^{1/2}} \sum_{k=1}^{n} Z_{k} \cdot \mathbb{I}[\vec{Y}_{k} \in A], \\ U_{n}^{*}(A) &= \frac{1}{n} \sum_{k=1}^{n} \int_{R(\vec{Y}_{k}) \cap A} h_{F}(t) \, dF(t) \\ \text{where } R(\vec{Y}_{k}) &= \pi_{i=1}^{d} [0, Y_{k}^{i}] \text{ and } h_{F}(t) = F(\pi_{i=1}^{d}[t_{i}, 1])^{-1}. \end{split}$$

Theorem (S. 98).

If X_1, X_2, \cdots are square-integrable strong martingales with corresponding *-quadratic variations X_1^*, X_2^*, \cdots such that (i)

$$E[|X_n(T)|^{2+\delta}] \le K < \infty$$

for some $\delta > 0$ and (ii) "jumps of X_n become asymptotically negligible as $n \to \infty$ and (iii) there is increasing continuous $\Lambda : \mathcal{A} \to [0, \infty)$ such that

$$X_n^*(A) \xrightarrow{P} \Lambda(A) \quad \text{as } n \to \infty$$

for each $A \in A$, then $X_n \to_D B$ where *B* is set-indexed Brownian motion with variance measure Λ .

Asymptotic rarefaction of jumps

 $\max_{0 \le t \le 1} |\Delta X_n(f(t))| \xrightarrow{P} 0 \text{ as } n \to \infty$ for every "flow" $f : [0,1] \to \mathcal{A}(u)$

where $\mathcal{A}(u) = \{$ finite unions in $\mathcal{A} \}$.

Definition of " $X_n \rightarrow_D X$ " for set-indexed process.

Either:

(a) <u>semi-functional convergence</u> $f(X_n) \rightarrow_D f(X)$ on D[0,1] for every "flow", $f : [0,1] \rightarrow \mathcal{A}(u)$, or

(b) <u>functional convergence</u> measures on D(A) induced by X_n 's converge weakly to that induced on D(A) by X.

Requires restrictions on "size" of A.

2. The Set-Indexed Ito Integral

Saada & S., 2004, in *Journal d'Analyse Mathematique*

Generalizes the classic notion of the Ito stochastic integral to the set-indexed setting.

Recall: classic situation: Given a "time-indexed" martingale,

$$M = \{M_t ; t \in [0,\infty)\}$$

and a "predictable" process,

$$X = \{X_t ; t \in [0,\infty)\},\$$

can define the *Ito integral* by

$$\int_{0}^{t} X_{s} \, dM_{s} = \lim_{n} \sum_{k=1}^{[t2^{n}]} X_{\frac{k-1}{2^{n}}} \left(M_{\frac{k}{2^{n}}} - M_{\frac{k-1}{2^{n}}} \right)$$

("random" Riemann-Stieltjes integral)

Set-indexed situation

Motivated by planar Ito integral (Cairoli and Walsh, 75).

Integrators: strong martingales.

Integrands: Predictable processes?

Def'n. Predictable rectangles,

 $\mathcal{P}_{0} = \{F \times [C]; C \in \mathcal{C}, F \in \mathcal{G}_{C}\}$ where, given $C = A \setminus \cup_{j=1}^{k} A_{i} \in \mathcal{C}$, $[C] = [\emptyset, A] \setminus \bigcup_{i=1}^{n} [\emptyset, A_{i}]$ with $[\emptyset, A] = \{B \in \mathcal{A}; B \subseteq A\}$ and $\mathcal{G}_{C} = \cap \{\mathcal{F}_{A}; A \in \mathcal{A}, A \cap C \neq \emptyset\}$ (weak history at C). **That is:** $F \times [C] \subseteq \Omega \times \mathcal{A}$ in \mathcal{P}_0 iff F is in weak history of rectangle C. (Close to that in: Ivanoff *et al.* 93)

To illustrate: If $\mathcal{A} = \{[0, z]; z \in [0, \infty)^d\}$, then identifying *z*'s with [0, z]'s:

$$F \times [C] \equiv F \times (z', z]$$

d = 1 (time-ind.) Reduces to:

d = 2 (planar) Reduces to:

Def'n. (i) The A-predictable σ -algebra

 $\mathcal{P} = \sigma(\mathcal{P}_0)$ on $\Omega \times \mathcal{A}$.

(ii) X is A-predictable if it's P-meas. as a map on $\Omega \times A$.

Therefore, ... every "simple process", $X = \sum_{i=1}^{n} \alpha_i \mathbb{1}_{F \times [C_i]} \quad (F_i \in \mathcal{G}_{C_i}, \text{ each } i)$ is \mathcal{A} -predictable.

Q: Other predictable processes?

Def'n (Analogue of "left-continuous"). $x : \mathcal{A} \to \mathbb{R}$ is *outer-continuous* at $A \in \mathcal{A}$ if, given (A_n) in \mathcal{A} ,

 $A_n \subseteq A$ and $A_n \rightarrow_{d_H} A$ implies $\lim_n x(A_n) = x(A)$.

Theorem (Saada and S., 2004) Every inner-continuous, adapted process is \mathcal{A} -predictable. **Definition of set-indexed integral:** If M a strong martingale in L^2 and

$$X = \sum_{i=1}^{n} \alpha_i \mathbb{1}_{F_i \times [C_i]}$$

is simple and \mathcal{A} -predictable,

$$\int_{[\emptyset,A]} X_B \, dM_B = \sum_{i=1}^n \alpha_i \mathbb{1}_{F_i} M(C_i \cap A)$$

Bridge to more general integrands: *the set-indexed Ito isometry.* Employs:

Def'n. $Q = \{Q_A ; A \in \mathcal{A}\}$ a *quadratic variation* of M if for every $C \in \mathcal{C}$,

(i) $Q_C \ge 0$ and (ii) $E[(M_C)^2 | \mathcal{G}_C] = E[Q_C | \mathcal{G}_C]$

Note: $\mathcal{G}_C \subseteq \mathcal{G}_C^*$, hence *-quadratic variation is a quadratic variation.

Theorem (Saada and S., 2004) Given any simple process *X*,

 $E[(f_{[\emptyset,A]} X \, dM)^2] = E[f_{[\emptyset,A]} X^2 \, dQ],$

where Q a quadratic variation of M.

Therefore, can extend integral to any A-predictable X for which

 $||X||_M = E[f_{[\emptyset,T]} X^2 dQ] < \infty$

Define:

$$L_M^2 = \{ X \in \mathcal{P} : ||X||_M < \infty \}$$

Note that

 $\int X \, dM = \{ \int_{[\emptyset, A]} X_B \, dM_B \, ; A \in \mathcal{A} \}$ is a set-indexed process.

Properties of set-indexed integral:

- (1) IX dM is a strong martingale,
- (2) If Q a quadratic variation of M, then I X² dQ a quadratic variation of I X dM
- (3) ξ a stopping set (in sense of Ivanoff and Merzbach, 95), then

 $(\int X \, dM)^{\xi} = \int 1\!\!1_{[0,\xi]} X \, dM^{\xi}$

(the key to localization.)

3. Set-indexed Stopping Lines

Saada and S., 2005. To appear in *J. of Theoretical Probab.*

Provides means of "stopping" a setindexed process in a flexible and general way.

Extends and compliments the notion of "stopping sets", ξ , introduced in Ivanoff and Merzbach, 95.

Motivation: In the plane ... (see Merzbach, 80; Merzbach and Zakai, 87).

Two notions of stopping. (a) Stopping point: $S : \Omega \to \mathbb{R}^2_+$.

(b) <u>Stopping line</u>: $\lambda : \Omega \to L$ where *L* denotes set of all "decreasing lines" in \mathbb{R}^2_+ .

References

M. Burke (1998), "A Gaussian bootstrap approach to estimation and tests", *Asymptotic Methods in Probability and Statistics*, North-Holland Publishers.

R. Cairoli, J. Walsh (1975), "Stochastic integrals in the plane", *Acta Mathematica*

A. Dabrowski, Y. Fang, G. Ivanoff (1996), "Strong approximations for multiparameter martingales", *Stochastics and Stochastic Reports*

M. Dozzi, G. Ivanoff, E. Merzbach (1994), "Doob-Meyer decomposition for set-indexed martingales", *Journal of Theoretical Probability*

G. Ivanoff, E. Merzbach (1996), "A martingale characterization of set-indexed Brownian motion", *Journal of Theoretical Probability*

G. Ivanoff, E. Merzbach (1995), "Stopping and setindexed local martingales", *Stochastic Processes and Their Applications* G. Ivanoff, E. Merzbach, I. Schiopu-Kratina (1993), "Predictability and stopping on lattices of sets", *Probability Theory and Related Fields*

E. Merzbach (1980), Stopping for two-dimensional stochastic processes. *Stochastic Processes and their Applications*.

E. Merzbach, M. Zakai (1987), Stopping a two parameter weak martingale. *Probability Theory and Related Fields*.

D. Saada, D. Slonowsky (2004), The set-indexed Ito integral. *Journal d'Analyse Mathematique* (Journal of Mathematical Analysis).

D. Saada, D. Slonowsky (2005), A notion of stopping line for set-indexed processes. To appear in *Journal of Theoretical Probability*.

D. Slonowsky, G. Ivanoff (1999), Set-indexed martingales: decompositions and central limit theorems. *Technical Report Series of the Laboratory for Research in Statistics and Probability*.