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1 Examples and informal

definitions

A single jump point process consists of a single
point whose location can be defined by a positive
random variable Y with distribution F . Let N(B) be
the number of points in a Borel set B. Then

N(B) = II{Y ∈ B} .

More generally, a point process defined by a finite
collection of random variables {Y1, . . . , Yk} is given by

N(B) =
k∑

i=1

II{Yi ∈ B} .
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If Y is a single uniform random variable on [0, 1] then a
lattice point process is defined as
N(B) =

∑∞
i=1 II{Yi ∈ B}, where Y1 := Y ,

Yn+1 = Yn + 1, n ≥ 1.

1.1 Poisson process on IR+

Let Nt be the number of points in the time interval
(0, t]. If for all k ≥ 1 and any increasing sequence
0 =: t0 < t1 < · · · < tk, the random variables

Nt1 , Nt2 −Nt1 , . . . , Ntk
−Ntk−1

are independent and Poisson distributed with
parameters λ(ti − ti−1), i = 1, . . . , k, respectively, for a
known constant λ > 0, then this point process is called
a (homogeneous) Poisson process.
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1.2 Cox process

Assume that (λt, t ≥ 0) is a nonnegative and locally
integrable stochastic process (i.e.

∫ t

0
λudu < ∞ for

every t ≥ 0). Let Λt =
∫ t

0
λudu. Let 0 < t1 < · · · < tk,

k ∈ IN. Now (Nt, t ≥ 0) is a doubly stochastic
Poisson process (or Cox process) if conditionally on
{Λt1 = a1,Λt2 − Λt1 = a2, . . . , Λtk

− Λtk−1 = ak} the
random variables Nt1 , Nt2 −Nt1 , . . . , Ntk

−Ntk−1 are
independent and Poisson distributed with parameters
a1, . . . , ak, respectively.

Special cases:

• If (λt) is deterministic and non-constant then we
have a inhomogeneous Poisson process;

• If λt ≡ λ then we have a homogeneous Poisson
process.
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2 Basic properties

2.1 Stochastic process

Let (Ω,F , IP) be a probability space. For a given
stochastic process (Xt, t ≥ 0) we define the internal
history FX

t := σ(Xs, 0 ≤ s ≤ t).

Example 2.1 • If N is the single jump point
process then FN

t = σ({Y ≤ s}, s ≤ t);

Let {τn} be an increasing sequence of random variables
such that τ0 ≤ 0 and τi > 0 for all i ≥ 1. A counting
process (or point process) is defined via

Nt =
∞∑

n=1

II{τn ≤ t} . (1)

Note that such a process (Nt, t ≥ 0) is a random
element of the space D[0,∞) (the space of all
real-valued functions which are right-continuous and
have left-hand limits). If the sequence {τn} is strictly
increasing then the point process is simple and
τ1, τ2, . . . are called the jump times of the process.
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2.2 Point process as a random measure

Let
N :=

∑
n

δτn , (2)

where δ· is a Dirac measure,

δx(B) =

N is an integer-valued locally bounded (i.e. N(B) < ∞
for bounded B) random measure, i.e. for each Borel
set B, N(B) is a random variable and for each ω,
N(ω, ·) is a measure. The space of all locally bounded
integer valued measures will be denoted by N .
Therefore, a point process can be viewed as a random
element with values in N .

Example 2.2 If N is the Poisson point process then
N =

∑∞
n=1 δτn ; τn =

∑n
j=1 Xj , where {Xn} is the

sequence of i.i.d. exponential random variables.
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3 Convergence of point processes

3.1 Convergence in the vague topology

Let µ(n), µ ∈ N . We say that a sequence (µ(n))
converges to µ in the vague topology (µ(n) v→ µ) if

∫
fdµ(n) →

∫
fdµ (3)

for all continuous functions f : IR+ → IR with compact
support.

We say that a sequence (N (n)) of point processes
converges weakly to a point process N (N (n) w→ N) if

∫
fdP (n) →

∫
fdP

for all continuous bounded functions f : B(N ) → IR.
Here, P (n), P are the distributions of the corresponding
point processes, i.e. P (A) := P (N ∈ A), where
A ∈ B(N ).



R. Kulik Point Processes - tutorial 7

'

&

$

%

Note that the continuous mapping theorem states that
if g is continuous and N (n) w→ N then g(N (n)) w→ g(N).

Take g : N → IN as g(µ) = µ(B) for bounded
B ∈ B(IR+). This map is continuous, i.e. µ(n) v→ µ

implies µ(n)(B) → µ(B), if µ(∂B) = 0. So, by the
preceding mapping theorem N (n)(B) w→ N(B).

Let’s summarize the above types of convergence:

• N (n) w→ N is the convergence of random measures;

• N (n)(B) w→ N(B) is the convergence of
integer-valued random variables.
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Weak convergence in the vague topology is equivalent
to convergence of the finite dimensional distributions
on continuity sets:

Theorem 3.1 N (n) w→ N if and only if

(N (n)(B1), . . . , N (n)(Bk)) w→ (N(B1), . . . , N(Bk)) (4)

for all k ≥ 1 and all bounded Borel sets such that
P (N(∂Bi) = 0) = 1, i = 1, . . . , k.

Counterexample 3.2 The assumption on the
boundary ∂Bi in Theorem 3.1 is important. In order to
see this consider N (n) := δ1+ 1

n
, N := δ1. For B = [ 12 , 1],

N(B) = 1, N (n)(B) = 0 for all n ≥ 1. Hence the
0− 1-valued random variables N (n)(B) cannot converge
to N(B), but N (n) w→ N .

On the other hand, weak convergence is equivalent to
convergence of jump points, i.e. N (n) w→ N if and only
if (τ (n)

1 , . . . , τ
(n)
k ) w→ (τ1, . . . , τk) for k ≥ 1.
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4 Palm measure

Example 4.1 Assume that in Toronto buses run
exactly on schedule every 1 minute. If we arrive just
after a bus departure then we have to wait exactly 1
minute for the next one. However, if we arrive at a
random time then we have to wait a random time with
a uniform distribution on (0, 1).

This phenomenon can be explained using Palm
measures.

We shall say that a random measure (point process) N

is time stationary if the joint distribution of

(N(B1 + t), . . . , N(Bk + t)) (5)

is independent of t ∈ IR, for all natural numbers k and
all Borel sets Bj , j = 1, . . . , k. Here,
B + t = {b + t : b ∈ B}.
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We denote by λ := IE[N((0, 1])] and we call λ the
intensity of the stationary point process N .

A point process is event stationary if its sequence of
interpoint distances {τn+1 − τn}n≥1 is stationary.

Example 4.2 Assume that N =
∑∞

i=−∞ δi. It is event
stationary but not time stationary. Its time stationary
version is the lattice point process.

Assume that a point process N is time stationary and
has finite intensity λ > 0. Define a probability measure
IP0

N as

IP0
N (·) = lim

h→0
IP(· | N((−h, 0]) > 0) .

Note that IP0
N (N({0}) = 1) = 1.

If a point process is time stationary under IP then it is
event stationary under IP0

N .
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Palm-Khinchin equation:

IP(N((0, t]) > j) = λ

∫ t

0

IP0
N (N((0, u]) = j)du .

A typical application of the Palm-Khinchin equation is
to finding a formula for the distribution of a forward
recurrence time, which is defined as

ηu ≡ inf{t > 0 : N((u, u + t]) > 0} .

IP

IP0
N

Note that for the stationary point processes we have
ηu

d= η0 for all u ≥ 0.
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From the Palm-Khinchin equation we have

IP(η0 > x) = IP(τ1 > x)

= IP(N((0, x]) = 0)

= 1− IP(N((0, x]) > 0)

= λ

∫ ∞

x

IP0
N (N((0, u]) = 0)du

= λ

∫ ∞

x

IP0
N (τ1 > u)du

where the last equality follows from IP0
N (τ0 = 0) = 1.

Note that as a by-product we obtain that the
distributions of η0 (= τ1) under IP and IP0

N do not
coincide.

Under IP and IP0
N a Poisson process has the same

distribution. This explains the following waiting time
paradox. Assume that in Toronto buses run according
to a Poisson process with rate 1. If we come at a
random time then our expected waiting time is 1
although the expected interval between buses is one as
well.
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Little’s Formula for queueing systems:

Consider a 1-server FIFO queue, i.e. customers arrive
according to a point process {τn} and then they are
served immediately if the server is empty or they join
the queue and wait to be served in the order of arrival.
Assume that a customer coming at time instant τn

requires a service time Sn. Then we may define sojourn
time sequence {Dn}, which is (under some
assumptions) stationary. Let (Lt, t ≥ 0) be the queue
length process, i.e.

L0 =
∑

n

II{τn < 0 < τn + Dn} .

Then (Little’s Formula):

IE[L0] = λIE0
N [D0] .

This connects the mean queue length at the time
instant of an arrival of a virtual customer (i.e. a
customer which would come at time t) and a mean
sojourn time for a customer calculated just after his
arrival. Note that in general IE[L0] 6= IE0

N [L0].
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5 Compensator

Using an infinitesimal notation
dNt = limdt→0[Nt+dt −Nt]/(dt), and

IE[dNt | Ft] = P (dNt = 1 | Ft) =: λtdt ,

which for a simple point process gives a stochastic
intensity as the conditional probability of having a
point in the small time interval (t, t + dt] given the
history Ft. A compensator: Λt =

∫ t

0
λsds.

5.1 Single jump point process

Note that if up to time t the point has not occurred
then the conditional probability of having a point in a
small time interval [t, t + dt) is just
F (dt)/IP(τ ≥ t) = F (dt)/(1−F (t)). On the other hand,
if the point has occurred before t then this probability
is equal to 0. Hence, the stochastic intensity should be

λtdt =
F (dt)

1− F (t)
II{Y ≥ t} . (6)



R. Kulik Point processes - tutorial 15

'

&

$

%

5.2 Poisson process

By the definition of the Poisson process we have

IE[Nt −Ns | Fs] = IE[Nt −Ns] = λ(t− s) .

Hence, the compensator has the form Λt = λt.

Watanabe’s characterization: A simple point
process with deterministic compensator must be
(inhomogeneous) Poisson.

Theorem 5.1 Assume that (N (n)) is a sequence of
point processes with the corresponding histories (F (n)

t )
and with the corresponding compensators Λ(n). If for
each t ≥ 0,

Λ(n)
t

w→ Λt ,

where (Λt) is a continuous deterministic function, then
N (n) w→ N , where N is a Poisson process with
compensator (Λt).
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6 Applications

1. Inhomogeneous Poisson processes.

Assume that λt is a deterministic function and that
for a λ ∈ IR+, λt < λ. Simulate points of a
homogeneous Poisson process with intensity λ.
Given a jump point τn of the homogeneous process,
accept it with the probability λτn/λ. Indeed,
simulate independently at each jump point r.v’s
Un ∼ U [0, 1]. If Un < λτn/λ then accept the jump
point and retain it. The point process defined by
the retained points is inhomogeneous Poisson with
intensity λt.

2. Simulation of Cox processes.

We can use Watanabe’s characterization to
simulate a Cox process as follows. Simulate first a
path of (λt). Then, given the path
(λt(ω), t ∈ [0, T ]) we can simulate points of a Cox
process as in the previous case.
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3. Radial simulation of Poisson process on B0(r)
- a ball located at the origin with radius r.
Simulate a Poisson process on [−r, r] and then
independently simulate random variables Un,
n = 1, . . . , n0 from a uniform distribution on
{x ∈ IRd : ||x|| = 1}. Locations of the points are
given by π1U1, . . . , πn0Un0 .

4. Poisson limit for empirical processes.
Consider a sequence {Yn} of i.i.d. non-negative
random variables with distribution F and assume
that F ′(0) 6= 0 exists. Define N (n) =

∑n
i=1 δnYi

.
Then the stochastic intensity of N (n) is given by
(compare to the single jump point process)

λ
(n)
t =

n∑

i=1

II{nYi ≥ t} F (dt/n)
1− F (t/n)

.

Note that this is the stochastic intensity w.r.t. to a
larger filtration than FN

t , i.e. w.r.t.∨k
i=1 σ({Yi ≤ s}, s ≤ t). It is possible to show that

Λ(n)
t

w→ F ′(0)t for each t ≥ 0 and hence a properly
scaled sequence of empirical processes converges to
a Poisson process.
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5. Statistics for spatial point processes. Let N

be a stationary point process indexed by IRd.

• Empty space function F - distance from the
origin to the nearest point of N , i.e.

F (r) := IP(N(B0(r)) 6= 0) ;

• Nearest neighbour function G

G(r) :=
1

λ|A| IE
[ ∑

n:τn∈A

II{Nτn(Bτn(r)) 6= 0}
]

,

where A ⊆ IRd and Nτn is the point process
obtained from N by removing the point τn.

Consider d = 1. Then F (r) = IP(τ1 ≤ r) is the
distribution of the first point under the stationary
measure IP and G is the distribution of the first
point under the Palm measure.

The functions F and G have practical
interpretations for d ≥ 2. The inequality
F (r) < G(r) implies clustering of points, whereas
F (r) > G(r) denotes a regularity in the point
pattern.
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7 Long Range (count)

Dependence

A stationary point process N is LRcd if

lim sup
t→∞

Var[N(t)]
IE[N(t)]

= +∞ .

A renewal process N with interpoint distances
{Xn, n ≥ 1} is LRcD if and only if IE0

N [X2] = +∞
(Daley, 1997). Thus, intuitively, being LRcD means
clustering of points. Daley’s conjectured: any
stationary, ergodic point process has such the property.
This s not true.

Any stationary point process with IE0
N [X2] = +∞ and

some positive dependence between intervals is LRcD.

How to characterize LRcD for point processes on IRd?


