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/1 Examples and informal \

definitions

A single jump point process consists of a single

point whose location can be defined by a positive
random variable Y with distribution F'. Let N(B) be
the number of points in a Borel set B. Then

N(B) =I{Y € B}.

More generally, a point process defined by a finite
collection of random variables {Y7,..., Y} is given by

N(B)=) I{Y; € B}.
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G Y is a single uniform random variable on [0, 1] thena\
lattice point process is defined as

N(B) =52, I{Y; € B}, where Y; :=Y,
Yor1=Y,+1,n>1

1.1 Poisson process on IR

Let N; be the number of points in the time interval
(0,t]. If for all £ > 1 and any increasing sequence
0=:tyg <t; <---<tg, the random variables

N¢wNiy, — Niyyoo oy Ny, — Ny

are independent and Poisson distributed with
parameters A(t; —t;_1), 1 = 1,...,k, respectively, for a
known constant A > 0, then this point process is called

a (homogeneous) Poisson process.

- /
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/1.2 Cox process \

Assume that (A¢,t > 0) is a nonnegative and locally

integrable stochastic process (i.e. fot Apdu < oo for
every t > 0). Let Ay = fot Agdu. Let 0 <ty < -+ <y,
k € IN. Now (N, t > 0) is a doubly stochastic
Poisson process (or Cox process) if conditionally on
{Ay, = a1, N\e, — Ny, = ag, ..., Ay, — Ay, _, = ai} the
random variables Ny, , Nt, — Ny, ..., Ny, — Ny, | are
independent and Poisson distributed with parameters

ai,...,a, respectively.
Special cases:

e If (\;) is deterministic and non-constant then we

have a inhomogeneous Poisson process;

o If \; = )\ then we have a homogeneous Poisson

process.

- /




R. Kulik Point Processes - tutorial 4

/2 Basic properties \

2.1 Stochastic process

Let (2, F,P) be a probability space. For a given
stochastic process (X¢,t > 0) we define the internal
history F* := 0(X,,0 < s < t).

Example 2.1 e If N is the single jump point
process then FY = oc({Y < s},s5 < t);

Let {7,} be an increasing sequence of random variables
such that o <0 and 7, > 0 for all ¢ > 1. A counting
process (or point process) is defined via

o

Ny =) Ifr, <t}. (1)
n=1
Note that such a process (Ng,t > 0) is a random
element of the space D0, 00) (the space of all
real-valued functions which are right-continuous and
have left-hand limits). If the sequence {7,} is strictly
increasing then the point process is simple and

Q, To, ... are called the jump times of the process. /
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/2.2 Point process as a random measure\

Let

N:=) 6, (2)

where 0. is a Dirac measure,
Oz (B ) —

N is an integer-valued locally bounded (i.e. N(B) < o
for bounded B) random measure, i.e. for each Borel
set B, N(B) is a random variable and for each w,
N(w,-) is a measure. The space of all locally bounded
integer valued measures will be denoted by N.
Therefore, a point process can be viewed as a random

element with values in V.

Example 2.2 If NV is the Poisson point process then
N =73 10r;T=>_j;_ Xj, where {X,,} is the

sequence of i.i.d. exponential random variables.

- /
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/3 Convergence of point processes\

3.1 Convergence in the vague topology

Let 1™, € N. We say that a sequence (u{™)
nver in the vague topolo (n) 25 1) if
converges to y in the vag pology (i 1)

[ raut — [ fan (3)

for all continuous functions f : Ry — R with compact

support.

We say that a sequence (N(™) of point processes
converges weakly to a point process N (N 2 N) if

/ fdp™ — / fdpP

for all continuous bounded functions f : B(NV) — R.
Here, P("™), P are the distributions of the corresponding
point processes, i.e. P(A):= P(N € A), where

A € B(N).

- /
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/N ote that the continuous mapping theorem states that\
if ¢ is continuous and N(™ & N then g(N(™) 5 g(N).

Take g : N — N as ¢g(u) = u(B) for bounded

B € B(R.). This map is continuous, i.e. u™ = p
implies (™ (B) — w(B), if n(0B) = 0. So, by the
preceding mapping theorem N (B) = N(B).

Let’s summarize the above types of convergence:

w .
e N 5 N is the convergence of random measures:

e N (B) 5 N(B) is the convergence of

integer-valued random variables.
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/VVeak convergence in the vague topology is equivalent\
to convergence of the finite dimensional distributions

on continuity sets:

Theorem 3.1 N 5 N if and only if

for all k > 1 and all bounded Borel sets such that
P(N(OB;)=0)=1,i=1,... k.

Counterexample 3.2 The assumption on the
boundary 0B; in Theorem 3.1 is important. In order to
see this consider N(™) ;= 51+%, N :=6;. For B = [%, 1],
N(B) =1, N™(B) =0 for all n > 1. Hence the

0 — 1-valued random variables N(™ (B) cannot converge
to N(B), but N 5 N

On the other hand, weak convergence is equivalent to

convergence of jump points, i.e. N(™ 5 N if and only
if (Tl(n>, e ,T,gn)) = (ri, ..., 1) for k> 1.

- /
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/4 Palm measure \

Example 4.1 Assume that in Toronto buses run
exactly on schedule every 1 minute. If we arrive just
after a bus departure then we have to wait exactly 1
minute for the next one. However, if we arrive at a
random time then we have to wait a random time with

a uniform distribution on (0, 1).

This phenomenon can be explained using Palm

Imeasures.

We shall say that a random measure (point process) N

is time stationary if the joint distribution of
(N(By +1),..., N(By + 1)) (5)

is independent of £ € R, for all natural numbers k£ and
all Borel sets B;, j = 1,...,k. Here,
B+t={b+t:be B}.

- /
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/W'e denote by A := E[N((0,1])] and we call A the \

intensity of the stationary point process V.

A point process is event stationary if its sequence of

interpoint distances {7,4+1 — T }n>1 is stationary.

Example 4.2 Assume that N = > ° _§;. It is event

1=—00
stationary but not time stationary. Its time stationary

version is the lattice point process.

Assume that a point process IV is time stationary and
has finite intensity A > 0. Define a probability measure
PY, as

P () = lim P(- | N((=h, 0]) > 0).

Note that P, (N ({0}) =1) = 1.

If a point process is time stationary under IP then it is

Qfent stationary under P} /
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/Palm-Khinchin equation: \

P(N((0,4]) > j) = A / P (N((0,u]) = f)du.

A typical application of the Palm-Khinchin equation is
to finding a formula for the distribution of a forward

recurrence time, which is defined as

Ny = inf{t >0: N((u,u+1t]) >0}.

Note that for the stationary point processes we have

uy 2770 for all u > 0.

- /
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/F rom the Palm-Khinchin equation we have \

IP(?]Q > 33) — ]P(Tl > ZC)
_ P(N((O x]) 0)
= x]) > 0)

— /]PON u)) = 0)du
— )\/x P (11 > w)du

where the last equality follows from P, (7o = 0) = 1.
Note that as a by-product we obtain that the
distributions of ny (= 71) under IP and IP%, do not

coincide.

Under P and P} a Poisson process has the same
distribution. This explains the following waiting time
paradox. Assume that in Toronto buses run according
to a Poisson process with rate 1. If we come at a
random time then our expected waiting time is 1

although the expected interval between buses is one as

Qell. /
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/Little’s Formula for queueing systems: \

Consider a 1-server FIFO queue, i.e. customers arrive
according to a point process {7,} and then they are
served immediately if the server is empty or they join
the queue and wait to be served in the order of arrival.
Assume that a customer coming at time instant 7,
requires a service time S,,. Then we may define sojourn
time sequence {D,, }, which is (under some
assumptions) stationary. Let (L;,t > 0) be the queue
length process, i.e.

Lo=) I{r, <0 <7+ Dy}

Then (Little’s Formula):
E[Lo] = MEx[Do] .

This connects the mean queue length at the time
instant of an arrival of a wvirtual customer (i.e. a
customer which would come at time t) and a mean

sojourn time for a customer calculated just after his

Qrival. Note that in general IE[Lo] # E3 [Lo]. /
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/5 Compensator

Using an infinitesimal notation
dNt = limdt_@[Nt_th — Nt]/(dt), and
E[dNt | ft] — P(dNt =1 ‘ ft) —. )\tdt,

which for a simple point process gives a stochastic
intensity as the conditional probability of having a
point in the small time interval (¢,¢ + dt] given the
history F;. A compensator: A; = fg Ads.

5.1 Single jump point process

Note that if up to time ¢ the point has not occurred

small time interval [¢,t + dt) is just

F(dt

\ 1 — F(t)

T{Y >t}.

then the conditional probability of having a point in a

F(dt)/PP(r > t) = F(dt)/(1—F(t)). On the other hand,
if the point has occurred before ¢t then this probability

is equal to 0. Hence, the stochastic intensity should be

(6)

/
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/5 .2 Poisson process \

By the definition of the Poisson process we have

E[N, — N, | Fs] = E[N, — N,| = A\t — s).

Hence, the compensator has the form A; = At.

Watanabe’s characterization: A simple point
process with deterministic compensator must be

(inhomogeneous) Poisson.

Theorem 5.1 Assume that (N™) is a sequence of

point processes with the corresponding histories (th(n))
and with the corresponding compensators A . If for
each t > 0,

A A,

where (Ay) is a continuous deterministic function, then
N 5 N where N is a Poisson process with
compensator (Ay).

- /
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/6 Applications \

1. Inhomogeneous Poisson processes.

Assume that \; is a deterministic function and that
for a A € Ry, Ay < A. Simulate points of a
homogeneous Poisson process with intensity A.
Given a jump point 7,, of the homogeneous process,
accept it with the probability A, /A. Indeed,
simulate independently at each jump point r.v’s

U, ~U|0,1]. If U, < A, /A then accept the jump
point and retain it. The point process defined by
the retained points is inhomogeneous Poisson with
intensity A;.

2. Simulation of Cox processes.

We can use Watanabe’s characterization to
simulate a Cox process as follows. Simulate first a
path of (\;). Then, given the path

(A¢(w),t € 10, T]) we can simulate points of a Cox

process as in the previous case.

- /
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/ 3. Radial simulation of Poisson process on Bo(r)\
- a ball located at the origin with radius r
Simulate a Poisson process on [—r, 7] and then
independently simulate random variables U,,,
n=1,...,n9 from a uniform distribution on
{z € R%: ||z|| = 1}. Locations of the points are
given by mUy, ..., 7 Un

.-

4. Poisson limit for empirical processes.
Consider a sequence {Y,} of i.i.d. non-negative
random variables with distribution F' and assume
that F'(0) # 0 exists. Define N(™ =3"" §,y..
Then the stochastic intensity of N(™) is given by
(compare to the single jump point process)

n dt/n
A = Z][{nY (F(/t/;).

Note that this is the stochastic intensity w.r.t. to a

larger filtration than F}V, i.e. w.r.t.

\/f:1 o({Y; < s},s <t). It is possible to show that
A X B0t for each t > 0 and hence a properly
scaled sequence of empirical processes converges to

\ a Poisson process. /
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/ 5. Statistics for spatial point processes. Let IV \
be a stationary point process indexed by R

e Empty space function F' - distance from the

origin to the nearest point of NV, i.e.
F(r) :==P(N(Bo(r)) #0);
e Nearest neighbour function G

Gr) = 5B | 3 MV (B, () £ 0} |

n:t, EA

where A C R? and N, is the point process
obtained from N by removing the point 7.

Consider d = 1. Then F(r) = P(m < r) is the
distribution of the first point under the stationary
measure IP and G is the distribution of the first

point under the Palm measure.

The functions F' and G have practical
interpretations for d > 2. The inequality

F(r) < G(r) implies clustering of points, whereas
F(r) > G(r) denotes a regularity in the point

\ pattern. /




R. Kulik Point processes - tutorial 19

ﬁ? Long Range (count) O

Dependence

A stationary point process N is LRcd if

, Var[N(t)]
1171511)801310 ENG] +00 .

A renewal process NV with interpoint distances

{X,,,n > 1} is LRcD if and only if E}[X?] = +o0
(Daley, 1997). Thus, intuitively, being LRcD means
clustering of points. Daley’s conjectured: any
stationary, ergodic point process has such the property.
This s not true.

Any stationary point process with E [X?] = 400 and
some positive dependence between intervals is LRcD.

How to characterize LRcD for point processes on R4?

- /




