Point processes - tutorial

Rafał Kulik

Department of Mathematics and Statistics
University of Ottawa
and
Mathematical Institute
University of Wrocław

Workshop on Forest Fires and Point Processes

May 24-28, 2005

The Fields Institute

1 Examples and informal definitions

A single jump point process consists of a single point whose location can be defined by a positive random variable Y with distribution F. Let N(B) be the number of points in a Borel set B. Then

$$N(B) = \mathbb{I}\{Y \in B\} .$$

More generally, a point process defined by a finite collection of random variables $\{Y_1, \ldots, Y_k\}$ is given by

$$N(B) = \sum_{i=1}^{k} \mathbb{I}\{Y_i \in B\}.$$

If Y is a single uniform random variable on [0, 1] then a lattice point process is defined as

$$N(B) = \sum_{i=1}^{\infty} \mathbb{I}\{Y_i \in B\}, \text{ where } Y_1 := Y,$$

 $Y_{n+1} = Y_n + 1, n \ge 1.$

1.1 Poisson process on \mathbb{R}_+

Let N_t be the number of points in the time interval (0, t]. If for all $k \ge 1$ and any increasing sequence $0 =: t_0 < t_1 < \cdots < t_k$, the random variables

$$N_{t_1}, N_{t_2} - N_{t_1}, \dots, N_{t_k} - N_{t_{k-1}}$$

are independent and Poisson distributed with parameters $\lambda(t_i - t_{i-1})$, i = 1, ..., k, respectively, for a known constant $\lambda > 0$, then this point process is called a (homogeneous) Poisson process.

1.2 Cox process

Assume that $(\lambda_t, t \geq 0)$ is a nonnegative and locally integrable stochastic process (i.e. $\int_0^t \lambda_u du < \infty$ for every $t \geq 0$). Let $\Lambda_t = \int_0^t \lambda_u du$. Let $0 < t_1 < \dots < t_k$, $k \in \mathbb{N}$. Now $(N_t, t \geq 0)$ is a **doubly stochastic**Poisson process (or Cox process) if conditionally on $\{\Lambda_{t_1} = a_1, \Lambda_{t_2} - \Lambda_{t_1} = a_2, \dots, \Lambda_{t_k} - \Lambda_{t_{k-1}} = a_k\}$ the random variables $N_{t_1}, N_{t_2} - N_{t_1}, \dots, N_{t_k} - N_{t_{k-1}}$ are independent and Poisson distributed with parameters a_1, \dots, a_k , respectively.

Special cases:

- If (λ_t) is deterministic and non-constant then we have a **inhomogeneous Poisson process**;
- If $\lambda_t \equiv \lambda$ then we have a homogeneous Poisson process.

2 Basic properties

2.1 Stochastic process

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. For a given stochastic process $(X_t, t \geq 0)$ we define the **internal** history $\mathcal{F}_t^X := \sigma(X_s, 0 \leq s \leq t)$.

Example 2.1 • If N is the single jump point process then $\mathcal{F}_t^N = \sigma(\{Y \leq s\}, s \leq t);$

Let $\{\tau_n\}$ be an increasing sequence of random variables such that $\tau_0 \leq 0$ and $\tau_i > 0$ for all $i \geq 1$. A **counting process** (or **point process**) is defined via

$$N_t = \sum_{n=1}^{\infty} \mathbb{I}\{\tau_n \le t\}. \tag{1}$$

Note that such a process $(N_t, t \ge 0)$ is a random element of the space $D[0, \infty)$ (the space of all real-valued functions which are right-continuous and have left-hand limits). If the sequence $\{\tau_n\}$ is strictly increasing then the point process is **simple** and τ_1, τ_2, \ldots are called the jump times of the process.

2.2 Point process as a random measure

Let

$$N := \sum_{n} \delta_{\tau_n} \,, \tag{2}$$

where δ is a Dirac measure,

$$\delta_x(B) =$$

N is an integer-valued locally bounded (i.e. $N(B) < \infty$ for bounded B) random measure, i.e. for each Borel set B, N(B) is a random variable and for each ω , $N(\omega,\cdot)$ is a measure. The space of all locally bounded integer valued measures will be denoted by \mathcal{N} . Therefore, a point process can be viewed as a random element with values in \mathcal{N} .

Example 2.2 If N is the Poisson point process then $N = \sum_{n=1}^{\infty} \delta_{\tau_n}$; $\tau_n = \sum_{j=1}^{n} X_j$, where $\{X_n\}$ is the sequence of i.i.d. exponential random variables.

3 Convergence of point processes

3.1 Convergence in the vague topology

Let $\mu^{(n)}, \mu \in \mathcal{N}$. We say that a sequence $(\mu^{(n)})$ converges to μ in the **vague topology** $(\mu^{(n)} \xrightarrow{v} \mu)$ if

$$\int f d\mu^{(n)} \to \int f d\mu \tag{3}$$

for all continuous functions $f: \mathbb{R}_+ \to \mathbb{R}$ with compact support.

We say that a sequence $(N^{(n)})$ of point processes converges **weakly** to a point process N $(N^{(n)} \xrightarrow{w} N)$ if

$$\int f dP^{(n)} \to \int f dP$$

for all continuous bounded functions $f: \mathcal{B}(\mathcal{N}) \to \mathbb{R}$. Here, $P^{(n)}, P$ are the distributions of the corresponding point processes, i.e. $P(A) := P(N \in A)$, where $A \in \mathcal{B}(\mathcal{N})$. Note that the continuous mapping theorem states that if g is continuous and $N^{(n)} \stackrel{w}{\to} N$ then $g(N^{(n)}) \stackrel{w}{\to} g(N)$.

Take $g: \mathcal{N} \to \mathbb{N}$ as $g(\mu) = \mu(B)$ for bounded $B \in \mathcal{B}(\mathbb{R}_+)$. This map is continuous, i.e. $\mu^{(n)} \stackrel{v}{\to} \mu$ implies $\mu^{(n)}(B) \to \mu(B)$, if $\mu(\partial B) = 0$. So, by the preceding mapping theorem $N^{(n)}(B) \stackrel{w}{\to} N(B)$.

Let's summarize the above types of convergence:

- $N^{(n)} \xrightarrow{w} N$ is the convergence of random measures;
- $N^{(n)}(B) \xrightarrow{w} N(B)$ is the convergence of integer-valued random variables.

Weak convergence in the vague topology is equivalent to convergence of the finite dimensional distributions on *continuity sets*:

Theorem 3.1 $N^{(n)} \stackrel{w}{\rightarrow} N$ if and only if

$$(N^{(n)}(B_1), \dots, N^{(n)}(B_k)) \xrightarrow{w} (N(B_1), \dots, N(B_k))$$
 (4)

for all $k \ge 1$ and all bounded Borel sets such that $P(N(\partial B_i) = 0) = 1, i = 1, ..., k$.

Counterexample 3.2 The assumption on the boundary ∂B_i in Theorem 3.1 is important. In order to see this consider $N^{(n)} := \delta_{1+\frac{1}{n}}, N := \delta_1$. For $B = [\frac{1}{2}, 1],$ $N(B) = 1, N^{(n)}(B) = 0$ for all $n \ge 1$. Hence the 0-1-valued random variables $N^{(n)}(B)$ cannot converge to N(B), but $N^{(n)} \stackrel{w}{\to} N$.

On the other hand, weak convergence is equivalent to convergence of jump points, i.e. $N^{(n)} \stackrel{w}{\to} N$ if and only if $(\tau_1^{(n)}, \dots, \tau_k^{(n)}) \stackrel{w}{\to} (\tau_1, \dots, \tau_k)$ for $k \geq 1$.

4 Palm measure

Example 4.1 Assume that in Toronto buses run exactly on schedule every 1 minute. If we arrive just after a bus departure then we have to wait exactly 1 minute for the next one. However, if we arrive at a random time then we have to wait a random time with a uniform distribution on (0, 1).

This phenomenon can be explained using **Palm** measures.

We shall say that a random measure (point process) N is **time stationary** if the joint distribution of

$$(N(B_1+t),\ldots,N(B_k+t)) \tag{5}$$

is independent of $t \in \mathbb{R}$, for all natural numbers k and all Borel sets B_j , $j = 1, \ldots, k$. Here,

$$B + t = \{b + t : b \in B\}.$$

We denote by $\lambda := \mathbb{E}[N((0,1])]$ and we call λ the **intensity** of the stationary point process N.

A point process is **event stationary** if its sequence of interpoint distances $\{\tau_{n+1} - \tau_n\}_{n\geq 1}$ is stationary.

Example 4.2 Assume that $N = \sum_{i=-\infty}^{\infty} \delta_i$. It is event stationary but not time stationary. Its *time stationary* version is the lattice point process.

Assume that a point process N is time stationary and has finite intensity $\lambda > 0$. Define a probability measure \mathbb{P}_N^0 as

$$\mathbb{P}_{N}^{0}(\cdot) = \lim_{h \to 0} \mathbb{P}(\cdot \mid N((-h, 0]) > 0).$$

Note that $\mathbb{P}_{N}^{0}(N(\{0\}) = 1) = 1$.

If a point process is time stationary under \mathbb{P} then it is event stationary under \mathbb{P}_N^0 .

Palm-Khinchin equation:

$$\mathbb{P}(N((0,t]) > j) = \lambda \int_0^t \mathbb{P}_N^0(N((0,u]) = j) du.$$

A typical application of the Palm-Khinchin equation is to finding a formula for the distribution of a **forward recurrence time**, which is defined as

$$\eta_u \equiv \inf\{t > 0 : N((u, u + t]) > 0\}.$$

 $m I\!P$

 \mathbb{P}_N^0

Note that for the stationary point processes we have $\eta_u \stackrel{d}{=} \eta_0$ for all $u \geq 0$.

From the Palm-Khinchin equation we have

$$\mathbb{P}(\eta_0 > x) = \mathbb{P}(\tau_1 > x)$$

$$= \mathbb{P}(N((0, x]) = 0)$$

$$= 1 - \mathbb{P}(N((0, x]) > 0)$$

$$= \lambda \int_x^\infty \mathbb{P}_N^0(N((0, u]) = 0) du$$

$$= \lambda \int_x^\infty \mathbb{P}_N^0(\tau_1 > u) du$$

where the last equality follows from $\mathbb{P}_{N}^{0}(\tau_{0}=0)=1$. Note that as a by-product we obtain that the distributions of η_{0} (= τ_{1}) under \mathbb{P} and \mathbb{P}_{N}^{0} do not coincide.

Under \mathbb{P} and \mathbb{P}_N^0 a Poisson process has the same distribution. This explains the following **waiting time paradox**. Assume that in Toronto buses run according to a Poisson process with rate 1. If we come at a random time then our expected waiting time is 1 although the expected interval between buses is one as well.

Little's Formula for queueing systems:

Consider a 1-server FIFO queue, i.e. customers arrive according to a point process $\{\tau_n\}$ and then they are served immediately if the server is empty or they join the queue and wait to be served in the order of arrival. Assume that a customer coming at time instant τ_n requires a service time S_n . Then we may define sojourn time sequence $\{D_n\}$, which is (under some assumptions) stationary. Let $(L_t, t \geq 0)$ be the queue length process, i.e.

$$L_0 = \sum_n \mathbb{I}\{\tau_n < 0 < \tau_n + D_n\}.$$

Then (Little's Formula):

$$\mathbb{E}[L_0] = \lambda \mathbb{E}_N^0[D_0].$$

This connects the mean queue length at the time instant of an arrival of a virtual customer (i.e. a customer which would come at time t) and a mean sojourn time for a customer calculated just after his arrival. Note that in general $\mathbb{E}[L_0] \neq \mathbb{E}_N^0[L_0]$.

5 Compensator

Using an infinitesimal notation $dN_t = \lim_{dt\to 0} [N_{t+dt} - N_t]/(dt)$, and

$$\mathbb{E}[dN_t \mid \mathcal{F}_t] = P(dN_t = 1 \mid \mathcal{F}_t) =: \lambda_t dt,$$

which for a simple point process gives a stochastic intensity as the conditional probability of having a point in the small time interval (t, t + dt] given the history \mathcal{F}_t . A compensator: $\Lambda_t = \int_0^t \lambda_s ds$.

5.1 Single jump point process

Note that if up to time t the point has not occurred then the conditional probability of having a point in a small time interval [t, t + dt) is just

 $F(dt)/\mathbb{P}(\tau \geq t) = F(dt)/(1-F(t))$. On the other hand, if the point has occurred before t then this probability is equal to 0. Hence, the stochastic intensity should be

$$\lambda_t dt = \frac{F(dt)}{1 - F(t)} \mathbb{I}\{Y \ge t\}. \tag{6}$$

5.2 Poisson process

By the definition of the Poisson process we have

$$\mathbb{E}[N_t - N_s \mid \mathcal{F}_s] = \mathbb{E}[N_t - N_s] = \lambda(t - s).$$

Hence, the compensator has the form $\Lambda_t = \lambda t$.

Watanabe's characterization: A simple point process with deterministic compensator must be (inhomogeneous) Poisson.

Theorem 5.1 Assume that $(N^{(n)})$ is a sequence of point processes with the corresponding histories $(\mathcal{F}_t^{(n)})$ and with the corresponding compensators $\Lambda^{(n)}$. If for each $t \geq 0$,

$$\Lambda_t^{(n)} \stackrel{w}{\to} \Lambda_t ,$$

where (Λ_t) is a continuous deterministic function, then $N^{(n)} \xrightarrow{w} N$, where N is a Poisson process with compensator (Λ_t) .

6 Applications

1. Inhomogeneous Poisson processes.

Assume that λ_t is a deterministic function and that for a $\lambda \in \mathbb{R}_+$, $\lambda_t < \lambda$. Simulate points of a homogeneous Poisson process with intensity λ . Given a jump point τ_n of the homogeneous process, accept it with the probability λ_{τ_n}/λ . Indeed, simulate independently at each jump point r.v's $U_n \sim U[0,1]$. If $U_n < \lambda_{\tau_n}/\lambda$ then accept the jump point and retain it. The point process defined by the retained points is inhomogeneous Poisson with intensity λ_t .

2. Simulation of Cox processes.

We can use Watanabe's characterization to simulate a Cox process as follows. Simulate first a path of (λ_t) . Then, given the path $(\lambda_t(\omega), t \in [0, T])$ we can simulate points of a Cox process as in the previous case.

- 3. Radial simulation of Poisson process on $B_0(r)$ a ball located at the origin with radius r. Simulate a Poisson process on [-r, r] and then independently simulate random variables U_n , $n = 1, \ldots, n_0$ from a uniform distribution on $\{x \in \mathbb{R}^d : ||x|| = 1\}$. Locations of the points are given by $\pi_1 U_1, \ldots, \pi_{n_0} U_{n_0}$.
- 4. Poisson limit for empirical processes.

Consider a sequence $\{Y_n\}$ of i.i.d. non-negative random variables with distribution F and assume that $F'(0) \neq 0$ exists. Define $N^{(n)} = \sum_{i=1}^{n} \delta_{nY_i}$. Then the stochastic intensity of $N^{(n)}$ is given by (compare to the single jump point process)

$$\lambda_t^{(n)} = \sum_{i=1}^n \mathbb{I}\{nY_i \ge t\} \frac{F(dt/n)}{1 - F(t/n)}.$$

Note that this is the stochastic intensity w.r.t. to a larger filtration than \mathcal{F}_t^N , i.e. w.r.t.

 $\bigvee_{i=1}^k \sigma(\{Y_i \leq s\}, s \leq t)$. It is possible to show that $\Lambda_t^{(n)} \stackrel{w}{\to} F'(0)t$ for each $t \geq 0$ and hence a properly scaled sequence of empirical processes converges to a Poisson process.

- 5. Statistics for spatial point processes. Let N be a stationary point process indexed by \mathbb{R}^d .
 - Empty space function F distance from the origin to the nearest point of N, i.e.

$$F(r) := \mathbb{P}(N(B_0(r)) \neq 0);$$

• Nearest neighbour function G

$$G(r) := \frac{1}{\lambda |A|} \mathbb{E} \left[\sum_{n: \tau_n \in A} \mathbb{I} \{ N_{\tau_n}(B_{\tau_n}(r)) \neq 0 \} \right],$$

where $A \subseteq \mathbb{R}^d$ and N_{τ_n} is the point process obtained from N by removing the point τ_n .

Consider d = 1. Then $F(r) = \mathbb{P}(\tau_1 \leq r)$ is the distribution of the first point under the stationary measure \mathbb{P} and G is the distribution of the first point under the Palm measure.

The functions F and G have practical interpretations for $d \geq 2$. The inequality F(r) < G(r) implies clustering of points, whereas F(r) > G(r) denotes a regularity in the point pattern.

7 Long Range (count) Dependence

A stationary point process N is LRcd if

$$\limsup_{t \to \infty} \frac{\mathbf{Var}[N(t)]}{\mathbb{E}[N(t)]} = +\infty .$$

A renewal process N with interpoint distances $\{X_n, n \geq 1\}$ is LRcD if and only if $\mathbb{E}_N^0[X^2] = +\infty$ (Daley, 1997). Thus, intuitively, being LRcD means clustering of points. Daley's conjectured: any stationary, ergodic point process has such the property. This s not true.

Any stationary point process with $\mathbb{E}_N^0[X^2] = +\infty$ and some positive dependence between intervals is LRcD.

How to characterize LRcD for point processes on \mathbb{R}^d ?