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1. Space plays fundamental roles in affecting the genetic structure and 

evolution of species, in regulating population dynamics, and in determining 

patterns and functions of communities.

2. Genetics – The milestone of genetics and evolution is the Hardy-Weinberg 

Equilibrium which predicts genotypic frequencies in the offspring from the 

allele frequencies of the parents. A key assumption for the HWE is random 

mating. Geography can prevent random mating if individuals are more likely 

to mate with neighbors than with mates chosen at random from the entire 

population. 

3. Speciation – A branching process by which different kinds of organisms 

originate from a single ancestral population. (Allopatric speciation: 

geographically isolated species diverge and evolve into different species.)

Why space matters? – ecological reasons



• The Galapagos lie 800-1100 km west of Ecuador
• 45 islands, islets & rocks
• 0.7 to 5 millions years old

Darwin’s finches

Allopatric speciation: The proximity of the various 
islands has permitted enough migration of the 
finches among them to enable distinct island 
populations to arise. But the distances between 
the islands is great enough to limit interbreeding 
between populations on different islands. This 
has made possible the formation of distinctive 
species on the various islands.



4. Population dynamics – is fundamentally determined by: birth, death, immigration 
and emigration. Migration is a spatial process defined by spatial parameters such 
as dispersal distance, dispersal mode, and environmental heterogeneity/barriers, 
etc. These parameters are ultimately responsible for the numerous observed spatial 
patterns of distribution.
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5. Population interactions – Prey-predator and competition are the basic interactions. 
Huffaker’s mite experiment is a classic study showing how spatial barriers would 
promote cyclic coexistence of two prey-predator mites raised in a microcosm. One 
is herbivorous mite feeding on oranges, the other is predatory mite feeding on the 
herbivorous mite. Huffaker
separated oranges by creating
barriers using vaseline. 
The heterogeneity he created
made the dispersal of the prey
between patches relatively easy 
but difficult for the predator.



6. Community theories and patterns – Many community theories in essence are 
developed to describe the distribution of species in space (e.g., the theory of 
island biogeography, niche theory, the neutral theory of Hubbell). So are the 
many community patterns such as species-area curves, beta diversity 
(describing spatial structure of communities in space).

7. Many ecological applications are spatially based (spatially referenced), e.g., 
identification of biodiversity hotspots/coldspots.

8. Modeling species distributions:

Issue 1 – Map agreement/thematic 

classification accuracy

Issue 2 – Image restoration (Ising

model, Bayesian method)

Issue 3 – Interpreting occurrence 

using external variables 

(autologistic regression)



Identical and Independently-Distributed (iid) data model

1. One of the most fundamental assumptions in statistics is that 

observations (samples) must be taken under identical conditions and 

each sample is taken independent of any others.

2. Such a set of data forms a random sample. Typical scenarios that 

generate a random sample include: (1) Sampling with replacement, (2) 

observations as the result of repeated, independent trials of an

experiment, under conditions that are identical w.r.t. those factors that 

can be controlled. Observations in a random sample are identical and 

independently distributed.

3. Standard statistical techniques (e.g., mle, test statistic) can then be 

applied to the data to build a statistical model, to estimate the model’s 

parameters and to draw inferences/conclusions.

Why space matters? – statistical reasons



iid is a very convenient assumption that makes much of mathematic-statistical 

theory tractable. However, spatial data are commonly correlated.

Typical situations – Data closer together, in space (or time), are more likely to be

similar than data far apart. Such data cannot be modeled as statistically 

independent.

Examples –

1). Soil pH value is typically positively correlated over space.

2). A big tree is less likely to live in the proximity of another big tree of the same 

species because of competition for limiting resources (e.g., light, nutrients).

Spatial data are commonly correlated



Some typical applications include:

1. Measuring, detecting and testing spatial patterns (random, regular, aggregated) 
in order to gain insights about the possible mechanisms that generate and 
control the phenomena of interest,

2. Quantifying spatial correlation (autocorrelation), spatial structures and scaling 
effect on the structure,

3. Modeling species dispersal/movement, estimating dispersal modes and rates,

4. Modeling species distribution in terms of external variables (soil properties, 
climate variables) in order to interpret and predict species distribution,

5. Estimating population parameters (e.g., the abundance of a wildlife),

6. Developing efficient sampling schemes and experiment designs,

7. Spatial prediction/interpolation: to estimate the volume of variables of interest 
(biomass) in the unsampled locations in terms of the neighboring information 
and other covariates.

Ecological applications of spatial statistics



1. Intraspecific competition – Individual trees become regularly spaced.

2. Interspecific competition – Different species become spatially repulsed.

Inferring competition from tree distribution

So it is reasonable to assume:

• If there is no selective mortality (random mortality), spatial distributions of pre-
mortality and post-mortality remain the same.

• If the post-mortality pattern is more regular (or repulsed) than the pattern of pre-
mortality, there is evidence of competition.

• If the post-mortality pattern is more aggregated than the pattern of pre-mortality, 
there is evidence of attraction.



Tree distributions in an old-growth forest in the 
Victoria Watershed (> 250 years)

– Douglas-fir (652)
– Western Hemlock (982)
– Western Redcedar (416)

Total number of trees: 2050

Plot size: 102××××87 m



Live and dead Douglas-fir trees

– Live (652)
– Dead (982)



Results:

Df – more regular after dead
Hl – more aggregated
Rc – no change

Intraspecific distributions of live trees and live + dead trees for Df, Hl and Rc

Confidence envelopes were generated from 
25 simulations



Interspecific distributions of Df, Hl and Rc: pre-mortality versus post-mortality

Results:

The post-mortality patterns 

for all the species pairs 

become more repulse than 

the pre-mortality patterns, 

suggesting strong 

interspecific competition 

among the species. 



Early successional species Late successional species

Species

Spatial pattern

Mortality

Competition

Douglas-fir Western hemlock
Western redcedar

Regular Clustered (under gaps 
created by the death of 
Douglas-firs)

Caused by intraspecific
competition

Caused by interspecific
competition

Intraspecific competition Interspecific competition

• Are these findings applicable to younger forests?

• How spatial pattern, competition, and mortality change with age? 



Open questions

1. Separate biological mechanisms from habitat heterogeneity – Aggregation can 
be produced from dispersal limitation and habitat heterogeneity. How we may 
design sampling schemes/field experiments to separate these two types of 
aggregation?

2. Modeling spatial heterogeneity – Most spatial theories and techniques require 
stationary and isotropic assumptions. Few real data meet these assumptions, 
and applications usually requires predicting anisotropic or nonstationary
patterns. 

Neyman-Scott pattern

Observed Simulated



3. Scaling effect: Few spatial data can avoid the problem of the size of sample area 
(called support in geostat, or modifiable areal unit in geography, or grain size in 
landscape ecology). In many applications, the support of the samples is not the 
same as the support of the estimates we calculate. 

Additive variable:
(# of trees in a quadrat)

Nonadditive variable:
(# of species in a quadrat
# of cars per city block)
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Can we scale down or up a spatial process?
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Grain size 
(m)

No. stems/m2 

(std. error)
No. species/m2 

(std. error)

5××××5 0.671 (0.244) 0.585 (0.197)

10××××10 0.671 (0.167) 0.475 (0.095)

20××××20 0.671(0.130) 0.318 (0.038)

25××××25 0.671 (0.121) 0.267 (0.026)

50××××50 0.671  (0.100) 0.129 (0.008)

100××××100 0.671 (0.085) 0.049 (0.001)

250××××250 0.671 (0.048) 0.011 (0.0004)

500××××500 0.671 (0.041) 0.003 (< 0.001)

500××××1000 0.671 0.0016

Spatial estimation: scale effect

Number of stems and number of species 
per m2 at different sampling scales (grain 
size) in a 1000××××500 m rain forest of 
Malaysia. The entire plot has 335,356  trees 
belonging to 814 species. The densities at 
each grain size were computed as follows: 
(1) divide the plot into a grid system using a 
given scale (e.g., 5××××5 m), (2) count the total 
number of stems and the number of species 
in each cells, respectively, (3) average these 
two quantities across all the cells, and (4) 
then divide the averages by the scale. 

The results clearly show how sampling 
scale affects the species diversity. They 
suggest that diversity based on per unit 
area (the last column) is a misleading 
measurement for comparing diversity 
between two ecosystems.


