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Abstract

Forest fires ignitions by lightning are frequently represented as a point process,
and one can adopt a variety of methods to study the characteristics of such
a process. Here we look at inter-point distances, ‖X1−X2‖ and the tail index
α defined by

P [‖X1 − X2‖ ≤ x] ∼ xα

as x ↓ 0. This index is can be estimated using the extreme least order statistics

of the inter-point distances, and we illustrate those methods on a sample data

set of ignitions.
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Modeling distances between ignitions.

1. A data set of ignitions.

2. Inter-point distances and a power law.

3. A limit theorem for minimal inter-point distances.

4. Application to data.
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1. A data set of ignitions.

http://cwfis.cfs.nrcan.gc.ca/en/historical/ha_lfdb_maps_e.php

A data set of lightning-induced fires across Canada of at least

200ha from 1959 to 1999.

Retained Data:

longitude,

latitude,

detection date
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We can see regional variations in numbers of ignitions.
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We also see variations in time.
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We also see variations in time.

6



Nonetheless, we can think of the data set as the realization of

a spatio-temporal point process, and can seek to characterize

some of its properties.

• Poisson-ness (homogeneous, cluster, . . . )

• intensity measure (exogenous, integrate-and-fire, . . . )

• inter-point distances (spatial structure, K function, . . . )
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2. Inter-point distances and a power law.

Denote the location of the kth ignition by Xk. In general the lo-

cation can be in any dimension (e.g. <d-valued) but for simplicity

we will assume that Xk = (Xk1, Xk2) ∈ <2. The inter-point dis-

tance between Xi and Xj is defined as h(Xi, Xj), where h is a

positive symmetric function.

We will assume that {Xk : k ≥ 1} are independent and identically

distributed random vectors.

We further assume that

P [h(X1, X2) ≤ x] ∼ L(x−1)xα

for a slowly varying function L and some α > 0.
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The h(Xi, Xj) are not independent.
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If we believe

P [h(X1, X2) ≤ x] ∼ xα

then we can write down the empirical distribution function, Gk,

of the h(Xi, Xj), try to fit it by xα (or logGk(x) by α logx), and

so estimate α, i.e. as x ↓ 0,

logG(x) = logP [h(X1, X2) ≤ x] ∼ log c + α logx
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This is not too impressive on the 4-point data set:

2.5

10.5

10.9

11.3

11.4

13.4
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The straight line fit to all the h(xi, xj).
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The straight line fit to a lower tail of the h(xi, xj). Good here

but ...
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... sometimes this is not as convincing.
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... and sometimes this is not as convincing.

Asymptotics?

Can we say any-

thing about the limit-

ing properties of such

an estimator?
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3. A limit theorem for minimal inter-point distances.

1. Xi iid, h symmetric non-negative kernel. For example, take

h(x, y) = |x − y|γ.

2. Regular variation condition: For α > 0, as x → 0

P [h(X1, X2) ≤ x] = L(x−1)xα.

3. As n → ∞, for all x > 0,

n3P [anh(X1, X2) ≤ x, anh(X1, X3) ≤ x] → 0
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In analogy with extremal processes we can define the point pro-

cess

Nn(A×B) = #{i < j ∈ {1 . . . n} :
(
(i/n, j/n), anh(Xi, Xj)

)
∈ A×B}

and look for its weak limit.
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h(Xi, Xj) = |Xi − Xj| < 0.05 for uniform Xi.
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Nn(A) ⇒ Pois(λ(A))
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Theorem. ∗Assume P [h(X1, X2) ≤ x] = L(x−1)xα and other

conditions. Then

Nn ⇒ N

where N is a point process on

{(x, y) : 0 < x ≤ 1, 0 < y < x} × <+

with intensity

η ((a1, b1] × (a2, b2] × (a3, b3]) = 2(b1 − a1)(b2 − a2)(b
α
3 − aα

3)

∗Poisson limits for U–statistics, AD, Herold Dehling, Thomas Mikosch,
Olimjon Sharipov, Stoch. Proc. Appl. 99, 137-157, (2002).

27



How does this help in estimating α?

28



How does this help in estimating α?

There are several point estimates from several contexts.

• Takens’ estimator for the correlation dimension.

• The spatial K-function near zero.

• Hill estimator.
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How does this help in estimating α?

There are several point estimates from several contexts.

• Takens’ estimator for the correlation dimension.

• The spatial K-function near zero.

• Hill estimator.

We can see how well each of these potential estimators performs.
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Takens’ estimator for the correlation dimension

As an alternative to the Grassberger-Procaccia estimator, Tak-

ens ∗ introduced a dimension estimator motivated by the maxi-

mum likelihood principle. Assume

P (‖X1 − X2‖ ≤ x) = xα , for 0 ≤ x ≤ δ.

Takens’ estimator modified with δn = δ/an.

α̂T =




−∑n

i=2

∑i−1
j=1 log(‖Xi − Xj‖/δn)I[0,δn](‖Xi − Xj‖)
∑n

i=2

∑i−1
j=1 I[0,δn](‖Xi − Xj‖)




−1

.

∗Takens, F. (1985) In Lecture Notes in Math. 1125, pp. 99–106
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By a continuous mapping argument, exploiting a representation

in terms of gamma variables, and by simple facts, we identify

the limit distribution for the modified Takens’ estimator:

α̂−1
T has asymptotic expectation

α−1

and variance

α−2
[
P (N(δα) = 0) + E[N(δα)I{N(δα})>0]

−1
]

.

As δ → 0, the variance is of the order α−2[1 + δα]. Note that it

does not shrink to 0.
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Poisson convergence of the K-function

In the spatial analysis of point patterns the K-function is used

as a measure of spatial dependence∗. A sample version of it is

given by the U-statistic

Kn(δ) =
n∑

i=2

i−1∑

j=1

I[0,δ](an‖Xi − Xj‖) .

Thus we have the kernel

h(x,y) = ‖x − y‖ ,

and so we may conclude that Kn(δ) = Nn(E1 × [0, δ]) converges

in distribution to a Poisson random variable with mean δα.

∗Cressie (1993) Statistics for Spatial Data. Wiley, New York.
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More generally, the Kn-processes converge in distribution in Mp(R+)

to a Poisson process K with mean measure α xα−1 dx:

Kn(·) = Nn(E1 × ·) =
n∑

i=2

i−1∑

j=1

εan|Xi−Xj|(·)
d→ K(·) . (1)

Writing K(δ) = K([0, δ]), it follows that there is distributional

convergence near zero,

(Kn(δ))δ≥0
d→ (K(δ))δ≥0 .
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The continuous mapping theorem for D[∆0,∆1] with 0 < ∆0 <

∆1 < ∞ mapping to C[0, b] yields convergence of squared error

between the data and a linear fit to logarithms;

Bn =

(∫ ∆1

∆0

(log+ Kn(δ) − (β0 + β log δ))2 dδ

)

β∈[0,b]

d→ B =

(∫ ∆1

∆0

(log+ K(δ) − (β0 + β log δ))2 dδ

)

β∈[0,b]

,

in C[0, b].
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Another application of the continuous mapping shows that the

LS minimizer β(n) of Bn on [0, b] converges to the minimizer β̂

of B on [0, b] (where log+ x = log(max(1, x))):

β(n) =

∫∆1
∆0

(log δ − log δ)(log+ Kn(δ) − log+ Kn(δ)) dδ
∫∆1
∆0

(log δ − log δ)2 dδ

d→ β̂ = α + an expression in (α, K,∆0,∆1). (2)

So the best linear fit to extremes in the K-function is an asymp-

totically biased estimator of α.
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Hill estimation of α.

Write

h(1) ≤ · · · ≤ h(n(n−1)/2)

for the order statistics of the sample h(Xi,Xj), i = 2, . . . , n, j =

1, . . . , i − 1. A classical estimator of α in the univariate case is

Hill’s estimator∗ given by

α̂n,m = −


 1

m

m∑

i=1

log(h(i)/h(m))




−1

for m ≥ 1;

Theorem. Under regular variation conditions, if m = mn → ∞
and

√
mn/n → 0, then Hill’s estimator is consistent, i.e. α̂n,m

P→
α.

∗Hill, B.M. (1975)Ann. Statist. 3, 1163–1174.
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• Takens’ estimator.

αT =




−∑n

i=2

∑i−1
j=1 log(‖Xi − Xj‖/δn)I[0,δn](‖Xi − Xj‖)
∑n

i=2

∑i−1
j=1 I[0,δn](‖Xi − Xj‖)




−1

.

• The spatial K-function near zero.

β(n) =

∫∆1
∆0

(log δ − log δ)(log+ Kn(δ) − log+ Kn(δ)) dδ
∫∆1
∆0

(log δ − log δ)2 dδ

• Hill’s estimator.

αn,m = −


 1

m

m∑

i=1

log(h(i)/h(m))




−1
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4. Application to data.

Xj = (longitude,latitude,detection date)
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To illustrate the estimators, we can compute the estimators of

α on this data.

We assume the space-time data on ignitions to be iid observa-

tions from a single density.

h((x, y, t)1, (x, y, t)2) =
√

(x1 − x2)
2 + (y1 − y2)

2 + (t1 − t2)
2

Here x is longitude, y is latitude, and t is time in years∗1000.
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As the index is estimated on just a few small inter-point dis-

tances; the estimate will effectively be determined by the most

intense “areas”.

Inter-point distances of 0 were deleted (38 out of 8050).

Conditional on using the same number of extreme values, Tak-

ens’ and Hill’s estimators yield the same values. The Takens

estimator employs essentially a fixed number of minimal inter-

point values, the Hill estimator a slowly increasing number.
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all points 1st deleted

Takens δ = 0.03 1.90 2.32
K function 1.54 2.71
Hill m = 25 2.11 2.61
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Here we seem to have (approximately)

P (‖X1 − X2‖ ≤ x) ∼ x2
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Here we seem to have (approximately)

P (‖X1 − X2‖ ≤ x) ∼ x2

1/

[
α̂−1 + 2

√
α̂−2(1 + δα))

]
= 0.63
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Here we seem to have (approximately)

P (‖X1 − X2‖ ≤ x) ∼ x2

Simulating 3-dimensional standard normal . . .

Takens/Hill K fn
2.5 2.9
3.5 2.4
3.8 2.9
4.1 4.7
3.6 3.5

3.50 3.28 averages
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Here we seem to have (approximately)

P (‖X1 − X2‖ ≤ x) ∼ x2

Simulating 3-dimensional standard normal . . .

Takens/Hill K fn
2.5 2.9
3.5 2.4
3.8 2.9
4.1 4.7
3.6 3.5

3.50 3.28 averages

3.00 exact
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Here we seem to have (approximately)

P (‖X1 − X2‖ ≤ x) ∼ x2

Some from 2-dimensional normal . . .

Takens/Hill K fn
2.0 1.4
3.2 2.4
3.5 5.0
1.7 1.4
2.1 2.1

2.50 2.16 averages

2.00 exact
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It seems that P (‖X1 − X2‖ ≤ x) for the ignition data is more

consistent with α = 2 than α = 3.

The best approximate CI we have is [0.63,∞].
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It seems that P (‖X1 − X2‖ ≤ x) for the ignition data is more

consistent with α = 2 than α = 3.

The best approximate CI we have is [0.63,∞].

If we treat each year (summer) as an independent sample, we

can compute an estimate for each year, and then compute an

approximate CI based on the independent estimates.
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α = 1.57

[1.34, 1.79]
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How to interpret α = 1.57?

This observation seems to indicate that (in the heart of most

intense lightning storms) that the process of ignitions seems to

behave more like a random process in dimension 1.5 rather than

a random process in dimension 3. This could arise, for example,

if an ignition spawned ”daughter” ignitions (either by “spotting”

or by clustering of the underlying lightning strikes) only along a

branching path downwind of the initial site.

In a more practical vein, this value and P [h(X1, X2) ≤ x] ' xα

can be employed to estimate the chance of a second ignition in

close proximity to the first.

Thanks to the organizers for a stimulating conference.
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