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2. Introduction.
Risk analyses and (marked) point processes abound

Concern here 1s with:

earthquakes
wildfires

insurance 1ssues

One specific topic 1s ordinal-valued marks
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A SYNOPSIS OF THE EUROPEAN MACROSEISMIC SCALE (EMS 98)

EMS|IDEFINITION |[DESCRIPTION
1 [Not felt Not felt, even under the most favourable circumstances.
) Vibration is felt only by individual people at rest in houses,
2 |Scarcely felt

lespecially on upper floors of buildings.

The vibration is weak and is felt indoors by a few people.

3 [Wek Pen!}le at rest feel a swaying or light trembling.
The earthquake is felt indoors by many people, outdoors by
A Largely very few. A few people are awakened. The level of vibration
observed is not frightening. Windows, doors and dishes rattle.
Hﬂugi_ug objects swiug.
The earthquake is felt indoors by most, outdoors by few.
Many sleeping people awake. A few run outdoors. Buildings
5 |Strong tremble throughout. Hanging objects swing considerably.

China and glasses clatter together. The vibration is strong.
Top heavy objects topple over. Doors and windows swing
open or shut.




Felt by most indoors and by many outdoors. Many people in

6 Slightly buildings are frightened and run outdoors. Small objects
damaging fall. Slight damage to many ordinary buildings e.g.: fine
cracks in plaster and small pieces of plaster fall.
Most people are frightened and run outdoors. Furniture is
, 2 shifted and objects fall from shelves in large numbers.
7 |Damaging : _ . S,
Many ordinary buildings suffer moderate damage: small
cracks in walls; partial collapse of chimneys.
s Furniture may be overturned. Many ordinary buildings
Heavily ; ;
8 = suffer damage: chimneys fall; large cracks appear in walls
damaging T : ST :
and a few buildings may partially collapse.
; Monuments and columns fall or are twisted. Many ordinary
9 [Destructive S B _ _ : L
buildings partially collapse and a few collapse completely.
10 |Very destructivejMany ordinary buildings collapse.
11 |Devastating Most ordinary buildings collapse.
12 Completely Practically all structures above and below ground are

devastating

heavily damaged or destroved.




3. Some statistical background.

Planar point process.
locations 1n the plane of pomts (x;,y,) for
e DS, L

Y(x,y) =Y 8(x—x;,y-y;)
;‘
Marked point process.
sequence (x-,yj,M,,-) lor 7=l.2:3.

Marks may be real, e.g. fire size , seismic damage
cost

Y(x.y) =Y M, 8(x—x..y-y,)
J

Stochastic case - marks assigned randomly to
points?



Spatial-temporal point process.

David Vere-Jones (2005). Some models and pro-
cedures for space-fime point processes. Fields
Institute Workshop on Forest Fires and Point
Processes



Models for marks. Categories, label ;
i). interval scale: j € R

ii). ordinal scale: qualitative order
spacing does not matter
can merge adjacent

iii). nominal categories: exchangeable

i) > ii) > iii)

Goals: few parameters, sensitivity, interpretability



Grouped continuous model. Conceptual approach

Latent random variable {
Y= 1if 6,_1<8<9,

Multinomial, mle via
Prob{Y = j} =

Prob{Y # 1}Prob{Y #2 | Y 2 1}..Prob{Y =7 | Y # 1

Model Prob{Y =j | Y = )}

Explanatory X: { = —-B'X + ¢

||||||



-

Cloglog. Extreme value
F(e) = 1-exp{—e®}
Prob{Y=j|Y>j X} = l—exp/—e” PX)

Prob {Y<j|X} = l—exp{—e” P}

Prob {Y=7 | X} = exp/—e¥ X} _ exps—e®FX)

9. - f
e =e% 4+ .+ e+ ¥

ji=1,..J-1



Chosen X

Estimate of linear predictor

E=-BX+y, y=.57721566..

Which cell (éj_ljéj) does ( fall into?



Inference.
mle
glm
gam
Besag models

Baddeley-Turmer’s spatstat

Assessment of fit



4. The seismic case.
Intensity data and maps.
Historically very important
The data are ordinal
How to smooth/display?
Have been used numerically. OK?

Attenuation laws



Lisbon 17535.

1 November 1755 - All Saints Day

Magnitude 8.3 to 9.0, several minutes duration
50-70 thousand deaths

Epicentre in Atlantic

Tsunami, fires

Voltaire, Poeme sur le desastre de Lisbonne

Week after event, Royal enquiry by Spain



Model

Y: intensity (mark)
(x,y): location

Prob{Y < j|(x,)} =1 — exp{—e” 8"
10§ cutpoints

g(x.y): smooth
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Lisbon 1755 EMS-98 Intensities
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Lisbon 1755 EMS-98 Intensities
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effect

Estimated intensity effects
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Assessment of fit.
Prob{Y = j|Y 2 j,(x,p)} = 1 — exp{—e” £}

¢;,—g(x,y): linear predictor

g(x.y): smooth



probability

Empirical Probability vs. Linear Predictor
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Prob{Y = j|Y = j(x. )} = 1 — expf—e” £}

¢;— g (x.y): linear predictor

g(x.,y): smooth

Parameter estimate uncertainty

Omuitted variables, e.g. geology

[[1 = exp{—e®” "% g (2)dz



log10(distance)

Distance versus intensity
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Attenuation.

log(—log(1 — Prob{Y=j})) = o; + Bd + ylog(d)
d: distance

Needed for building codes



probability
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Damageability matrix.

Two building types
Masonry - traditional houses at the times of the shock
Monumental - castles. churches, ...

Proportions damaged

Risk type vs. EMS-98 V VI VII  VIII

masonry 01 .25 61 2
monumental 04 .25 52 .60

Martinez Solares & Lopez Arroyo (2004)



5. Wildfires.
Tens of thousands/year in North America
Millions of acres

Hundreds millions of dollars spent on suppression

1989 - 1996 date, size, location 1n Oregon

n = 15,786



Fires in Federal Lands in Oregon 1989 - 1996
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Model.

Many voxels, (dx.dy.dr). All "fires", sample of
"no-fire" cases (with prob = = .00012).

logit risk = g(x.,y) + g-(d) + §
(x.,v) - location
d - day of the year

¢ - year effect: IN(0,7%)

log 1/ as offset, logit p = log(p/(1-p))



Cay effect
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Shrunken year effecls

a.d

FEAr




Expected number of fires for some region and
future occasion

£ Y [exp {ﬁﬁ%z}/(l +exp{r}f+ tz o (2)dz ¢ ™)

7

with 7 labelling pixels and days of the month and

”

H; = él(xfa.l”j)'l“ég(djl

[t after
Prob {at at least one fire in M|

can integrate/sum (*) over M.
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sqrt(acres)

Large fires’ by month By year
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cost (millions of 2002 dollars )
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6. Insurance considerations.
L: accumulated claims over a year
Pure risk premium.

P=E{L}=p
Loaded premium. safety premium
P = (1+A)ug + Boyp + yof

Loading should be larger the greater the uncertainty

mvolved

Damageability matrix/relationship. Provides potential losses

from given "intensity"



Discussion.
Considering the msurance problem provides focus

Can treat intensities as approximately numerical
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