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Point process intensity \(¢; H;)

e e.dg. Homogeneous Poisson process N(t)
(with rate )\):

E[N(t)] = /Ot Adu = At

e €.d. Inhomogeneous Poisson N(t) (with
time-varying rate \(¢)):

E[N(t)] = /OtA(u)du

e Alternate interpretation:

Aw) = lim %P(N(u +h)— N(u) > 0)

e For non-Poisson processes, the intensity
will depend on the past H;.



Point Process Likelihood

e Consider observed points
O<b <by <+ <by,_1<bp<T

e [ he point process log-likelihood is given
by

L) =Y log (A(b)) - /OT)\(u)du.
J



Local Point Process Likelihood

e Loader (1996) and Hjort and Jones
(1996) have defined a local likelihood
which can be used for, among other
things, estimating densities.

Advantages of this approach:

1. Local linear (and other adjustments)
are possible.

2. Covariates (usually factors) can be
included

e We imitate Loader (1996) and define a
version of local point process likelihood as

LOw,@) = Y log (An(N))) K (z, Hy;, h) —
J

T
/O An(uw) K (x, Hy, h)du.

e T he argument '+, denotes the history of
the ignition point process up to time u



Application to Ignition intensity (in progress)

e A simple example:

A possible (but not serious!)
interpretation: associated with each
lightning stroke L, is a delay V;
(holdover time). The ignitions

N; = L; +V; are thinned if N; > L;;.

the local likelihood becomes

> 109((An(N))) K (z — (Nj — Lycwy))) —
JE AN @K (2 — (u— L)) du.

Maximizing this gives an estimate of
the intensity of ignitions r time units
after the previous lightning stroke.



The local constant estimator:

Use

log(An(z)) = ag
Maximize local likelihood at z w.r.t. ag:

S5 Kn (&~ (N; = L))

ngh (x—(u—LN(U))) du. (1)

We might interpret the above
estimator of \y(x) as the conditional
density of V;, given N; < L;4,.



o If we wish to study the dependence of a
given response on all previous flashes, we
Mmight use a K function of the form

Y Kp(z—(u—1L;)).
1L, <u
The resulting local constant estimator is
given by
2.5 2iiLi<N; Kh (ZL‘ — (N — Li))
18 Sin<u Kn (@ — (u— Ly)) du

e Allowing for possible dependence on all of
the lightning strokes gives the following:

> i K, (33 — (IV; — Li))
Jo SiKp (z— (u— L)) du
[This is related to Brillinger’'s (1976)

estimate of the cross-intensity function
between lightning strokes and ignitions.]




e T his methodology allows for linear and
quadratic adjustments to be made to this
kind of estimator.

log(An(u); x) =ag + a1(u— L(z,u) — x)
or the local quadratic
log(An (u); ) = ao+a1(u—L(z,u)—z)+az(u—L(z,u)—z)°.

We have to maximize the local likelihood
at z w.r.t. apg,a; and ao. The intensity
estimate at z is given by ag.



An even simpler application: take
K(x,Hy,h) = Kj,(x — u), where u is the
time of the most recent ignition before =z.

Local constant:

log(A(z)) = ag

Local likelihood:

T
L=) aoKp(z — N;) — eaO/O Kyp(x —u)du

e0 —=
he(x)

where c(z) is easily calculated.

This is closely related to a first order
intensity function.



e INcluding year as a covariate

log(A(z)) = ag + ayear(z)

= Equivalent to computing intensity
estimates for each year separately

Ignitions in Ontario (1990-2002):
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Future Work

e Implementation of local linear and
quadratic first order intensity estimator,
including year as a covariate.

e Higher order intensity/cross-intensity
estimator, including year, district (where
lightning occurred), and other covariates



