Fast CDO Pricing in an Affine Markov Chain Model of Credit Risk

Tom Hurd Alexey Kuznetsov

Mathematics and Statistics McMaster University

Fields Institute, Feb 23, 2005

What is Credit Risk?

Affine Markov Chain Model

Computations in the AMC Model

Collateralized debt obligations

Performance of our Model

Risk Management

Conclusion

Overview

Credit risk is the risk of financial losses due to

- unexpected changes in credit quality of a counterparty;
- ▶ failure of counterparty to service their debt;
- ▶ liquidation of the counterparty.

Fundamental Question

- ▶ How much interest should be charged to a default risky counterparty?
- ▶ Answer is expressed in terms of *credit spread*

$$S(t,T) = \frac{1}{T-t} \log \left(\frac{B_t^{(d)}(T)}{B_t(T)} \right)$$

where $B_t^{(d)}(T)$ is price of risky zero coupon bond and $B_t(T)$ is price of riskless zero coupon bond.

Understanding Credit Risk

Requires understanding and then modeling the following fundamental quantities:

- \triangleright Risk-free interest rate r_t at time t;
- ▶ Time of a default "event" of the *i*th firm t_i^* ;
- ▶ Recovery rate at time t conditioned on default: R_t^i ;
- Premium investors demand as compensation for bearing credit risk.

Intensity Based (Reduced Form) Models

▶ Default time t^* modeled exogenously using stochastic intensity λ_t : a nonnegative process such that

$$P(t^* < t + dt | t^* > t) = \lambda_t dt$$

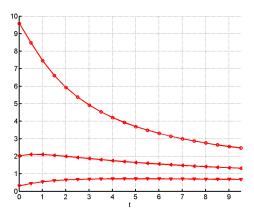
▶ It is convenient to introduce "default process"

$$Y_t = I\{t^* > t\}$$

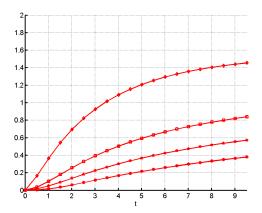
- Survival probability $P[t^* > t] = P[Y_t = 1] = E[e^{-\int_0^t \lambda_s ds}].$
- ▶ Specify a market implied dynamics for λ_t .
- ▶ Bond price (zero recovery):

$$B_t^{(d)}(T) = E_t[e^{-\int_t^T r_s ds} I\{t^* > T\}] = E_t[e^{-\int_t^T [r_s + \lambda_s] ds}].$$

Typical Credit Spreads in Intensity Based Models



Typical Credit Spreads in Structural Models



Affine Markov Chain model

- ▶ Idea: generalize the process Y_t
- ▶ intensity based model: Y_t has two states: $\{0,1\}$

$$P[Y_{t+dt} = 0 | Y_t = 1] = \lambda_t dt.$$

and 0 is an absorbing state.

▶ let's introduce K + 1 states: $\{0, 1, 2, ..., K\}$ and stochastic intensity λ_t

$$P[Y_{t+dt} = j | Y_t = i] = L_{ij}\lambda_t dt.$$

and 0 is an absorbing state.

Ingredients

- ▶ Spot interest rate r_t and recovery rate R_t ;
- \triangleright Default process Y_t , defined by
 - stochastic intensity $\lambda_t \geq 0$;
 - ▶ the matrix of transition intensities

$$\mathcal{L}_Y = (L_{ij})_{i,j=0...K}, \qquad P[Y_{t+dt} = j | Y_t = i] = L_{ij}\lambda_t dt.$$

0 is an absorbing state, thus $L_{0j} = 0$

▶ Default time t^* : first time Y_t hits absorbing state 0.

Interpretation

- ▶ intensity based model:
 - $Y_t = 1$: company is not in default by time t
 - $Y_t = 0$: company has defaulted by time t
- ► AMC model:
 - $Y_t = i, i \neq 0$: company is in the credit rating i at time t
 - $Y_t = 0$: company has defaulted by time t
- ▶ if K = 1, then intensity based model \equiv AMC with matrix \mathcal{L}_Y given by

$$\mathcal{L}_Y = \left(egin{array}{cc} 0 & 0 \ 1 & -1 \end{array}
ight)$$

Transition probabilities

▶ The rating transition probabilities are given by

$$P[Y_t = j | Y_0 = y] = \sum_{i=0}^{K} q_{yi} \tilde{q}_{ij} E_0 \left[e^{\alpha_i \int_0^t \lambda_s ds} \right].$$

▶ Intensity based model:

$$P[Y_t = 0|Y_0 = 1] = 1 - E_0[e^{-\int_0^t \lambda_s ds}].$$

Defaultable Bonds

▶ Defaultable bond with zero recovery has price

$$B_t^{(d)}(T) = E_t \left[e^{-\int_t^T r_s ds} I\{t^* > T\} \right] =$$

$$= B_t(T) - \sum_{i=0}^K q_{yi} \tilde{q}_{i0} E_t \left[e^{-\int_t^T (r_s - \alpha_i \lambda_s) ds} \right]$$

▶ intensity based model:

$$B_t^{(d)}(T) = E_t[e^{-\int_t^T (r_s + \lambda_s)ds}].$$

Intensity and Stochastic time change

- ▶ Idea: define an increasing (continuous) process $\tau_t = \int_0^t \lambda_s ds$, thus $d\tau_t = \lambda_t dt$;
- ▶ AMC model: define a Markov chain \tilde{Y}_t with generator \mathcal{L}_Y , independent of τ_t . Then

$$P[\tilde{Y}_{t+dt} = j | \tilde{Y}_t = i] = L_{ij}dt.$$

▶ Define $Y_t = \tilde{Y}_{\tau_t}$. Then

$$P[Y_{t+dt} = j | Y_t = i] = L_{ij} d\tau_t = L_{ij} \lambda_t dt.$$

▶ Intensity based models \equiv doubly stochastic models: Y_t is a Markov chain subordinated by a stochastic time change τ_t .

Choice of underlying processes

▶ Key idea: in all the formulas we need to compute

$$E\left[e^{-\int_0^t (r_s - \alpha_i \lambda_s) ds}\right] = E\left[e^{-\int_0^t r_s ds + \alpha_i \tau_t}\right]$$

▶ Model r_t and λ_t as linear combination of affine processes Z_t^1 and Z_t^2

$$r_t = \mathbf{M}_r^1 Z_t^1 + \mathbf{M}_r^2 Z_t^2 = \langle \mathbf{M}_r \cdot Z_t \rangle, \qquad \lambda_t = \langle \mathbf{M}_\tau \cdot Z_t \rangle,$$

for which

$$E\left[e^{-\int_0^t \alpha Z_s ds}\right] = e^{\Phi(t) + Z_0 \Psi(t)}$$

▶ Model time change process as $\tau_t = \int_0^t \lambda_s ds + m_\tau Z_t^3$, where Z_t^3 is a jump process.

Choice of
$$\mathbf{Z}_t = (Z_t^1, Z_t^2)$$
 and Z_t^3

Three processes with distinct characteristics:

 \triangleright Z_t^1 : CIR process (diffusion) with Markov generator

$$\mathcal{L}_{Z^1} f(x) = a(1-x)f'(x) + cxf''(x),$$

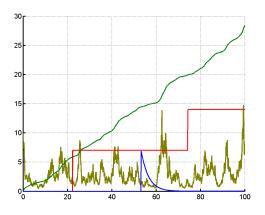
▶ Z_t^2 : affine process with jumps defined by Markov generator

$$\mathcal{L}_{Z^2}f(x) = \lambda_2(f(x+h) - f(x)) - h\lambda_2xf'(x).$$

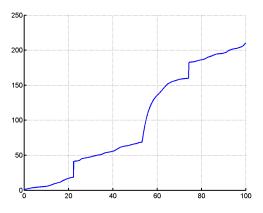
▶ Z_t^3 (jump part of the time change): Poisson process with jump size h_3 and intensity $\lambda_3 = 1/h_3$ and λ_3^{-1} :

$$Z_t^3 = h_3 \Pi(\lambda_3 t).$$

Components of time change process



Time change process τ_t



Building Blocks G_1 , G_2 , G_3

All essential computations come from explicit formulas for the following:

$$G_1(t, \mathbf{z}; \mathbf{u}, \mathbf{v}) = E_{0, \mathbf{z}} \left[e^{-\int_0^t \langle \mathbf{u} \cdot \mathbf{Z}_s \rangle ds} e^{-\langle \mathbf{v} \cdot \mathbf{Z}_t \rangle} \right]$$

$$G_{2}(t, \mathbf{z}; \mathbf{u}, \mathbf{v}, \mathbf{w}) = E_{0,\mathbf{z}} \left[e^{-\int_{0}^{t} \langle \mathbf{u} \cdot \mathbf{Z}_{s} \rangle ds} \langle \mathbf{w} \cdot \mathbf{Z}_{t} \rangle e^{-\langle \mathbf{v} \cdot \mathbf{Z}_{t} \rangle} \right]$$
$$= -\langle \mathbf{w}, \nabla_{\mathbf{v}} \mathbf{G}_{1} \rangle.$$

$$G_3(t;v) = E\left[e^{-vZ_t^3}
ight] = \exp\left(\lambda_3 t (e^{-v/\lambda_3} - 1)
ight).$$

Markov Generator \mathcal{L}_{Y}

Markov states represent Standard and Poor's "rating class":

$$\{0,1,\ldots,7\} \leftrightarrow \{\text{'default'},\, CCC,\, B,\, BB,\, BBB,\, A,\, AA,\, AAA\}.$$

► Markov generator:

▶ the columns of $Q = (q_{ij})$ are the eigenvectors of \mathcal{L}_Y with eigenvalues α_i . $\tilde{Q} = (\tilde{q}_{ij}) = Q^{-1}$.

Other parameters

- interest rates: $\mathbf{M}_r = (0.05, 0)$
- ▶ stochastic time change: $M_{\tau} = (0.6, 1.2)$ and $m_{\tau} = 0.2$
- ▶ CIR (Z^1) parameters: a = c = 0.1
- Z^2 parameters: $h_2 = 3, \lambda_2 = 0.3$
- ► Z^3 parameters: $h_3 = 3, \lambda_3 = 1/3$

Rating Transition Probabilities

Lemma

Rating transition probabilities for the process Y_t are

$$P_{0,\mathbf{z},y}(Y_t = j) = \sum_{i=0}^K q_{yi}\tilde{q}_{ij}G_1(t,\mathbf{z}; -\alpha_i \mathbf{M}_{\tau}, \mathbf{0})G_3(t, -\alpha_i m_{\tau}).$$

Default Density Function

Proposition

Probability density function of default is

$$\frac{d}{dt}P_{0,\mathbf{z},y}(t^* < t) = \sum_{i=1}^K q_{yi}\tilde{q}_{i1} \left[\alpha_i G_2(t,\mathbf{z}; -\alpha_i \mathbf{M}_{\tau}, \mathbf{0}, \mathbf{M}_{\tau}) + G_1(t,\mathbf{z}; -\alpha_i \mathbf{M}_{\tau}, \mathbf{0}) \lambda_3 (e^{\alpha_i m_{\tau}/\lambda_3} - 1) \right] G_3(t, -\alpha_i m_{\tau}).$$

Default Free Bonds

Proposition

Price at time t of riskless zero-coupon bond with maturity T

$$B_t(T) = E_t \left[e^{-\int_t^T r_s ds} \right] = G_1(T - t, \mathbf{Z}_t; \mathbf{M}_r, \mathbf{0}).$$

Defaultable Bonds

Proposition

1. Defaultable bond with zero recovery has price

$$B_t^{(d)}(T) = E_{t,\mathbf{z},y} \left[e^{-\int_t^T r_s ds} I\{t^* > T\} \right] =$$

$$B_t(T) - \sum_{i=0}^K q_{yi} \tilde{q}_{i1} G_1(T - t, \mathbf{z}; \mathbf{M}_r - \alpha_i \mathbf{M}_\tau, \mathbf{0}) G_3(T - t, -\alpha_i m_\tau).$$

2. Defaultable bond with non-zero recovery are given by a more complicated formula of same type.

Simulation of Credit Spread for a BB company

 ${\it spreads}$

Simulation of Credit Spreads for all companies

 ${\it spreads}$

Dependence of Credit Spreads on h_2

Model of M Firms

- ▶ Independent processes $\tilde{Y}_t^1, \dots, \tilde{Y}_t^M$, which are Markov chains on $\{0, 1, 2, \dots, K\}$, with 0 an absorbing state, and with identical generators $\mathcal{L}_{\tilde{Y}}$.
- ▶ Interest process r_t , recovery process R_t and stochastic time change process τ_t , as for one firm model.
- Credit migration processes

$$Y_t^1 = \tilde{Y}_{\tau_t}^1, \dots, Y_t^M = \tilde{Y}_{\tau_t}^M.$$

▶ Default time t_i^* is first time corresponding process Y_t^i hits absorbing state 1.

Interpretation of Z^1, Z^2, Z^3

$$\tau_t = \int_0^t \left(\mathbf{M}_{\tau}^1 Z_s^1 + \mathbf{M}_{\tau}^2 Z_s^2 \right) ds + m_{\tau} Z_t^3.$$

- $\triangleright Z^1$: "normal" economy
- \triangleright Z^2 : clustering of defaults
- \triangleright Z^3 : simultaneous defaults

Pairwise Joint Default Distributions

Lemma

The joint probability $P_{0,\mathbf{z},y_i,y_i}(t_i^* < s, t_i^* < t)$ is given by

$$\begin{split} P_{0,\mathbf{z},y_{i},y_{j}}(t_{i}^{*} < s, t_{j}^{*} < t) &= E_{0,\mathbf{z},y_{i},y_{j}} \left[I\{Y_{s}^{i} = 1\} I\{Y_{t}^{j} = 1\} \right] \\ &= \sum_{k,l=1}^{K} q_{y_{i}k} \tilde{q}_{k1} q_{y_{j}l} \tilde{q}_{l1} E_{0,\mathbf{z}} \left[e^{\alpha_{k} \tau_{s} + \alpha_{l} \tau_{t}} \right], \end{split}$$

where the expectation $E_{0,\mathbf{z},y_i,y_j}[e^{\alpha_k \tau_s + \alpha_l \tau_t}]$ can be computed explicitly.

Joint default density

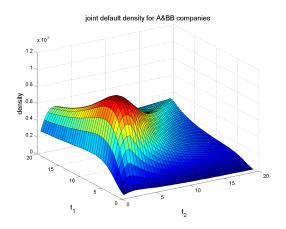


Figure: Joint BB + BB default density, no jumps

Joint default density

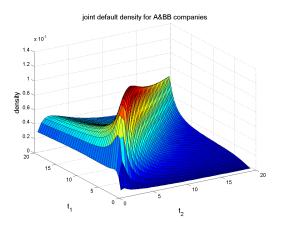


Figure: Joint BB + BB default density, jumps in \mathbb{Z}^2

CDOs: What are they?

A large portfolio of similar bonds written on different firms is sliced into "tranches" ordered by "seniority". Each CDO tranche is a separate investment vehicle with its characteristic risk-reward.

Synthetic CDO Tranche

- ▶ Credit swap between two parties, insured and insurer.
- ▶ Two components, "premium leg" and "insurance leg" are basic credit derivatives on total default loss of portfolio.
- \triangleright Fractional loss at time t

$$L_t = \sum_{i=1}^{M} (1 - R_0) \frac{N_i}{N} I\{t_i^* < t\}$$

- ► Here:
 - \blacktriangleright M: number of firms;
 - ▶ N_i : face value of bond ("notional") of firm i;
 - $N = \sum_{i=1}^{M} N_i$: total notional.

CDO Formulas

CDO tranche for fractional losses in a range $[\underline{x}, \bar{x}] \subset [0, 1]$:

$$U(x) = \frac{1}{\overline{x} - x} \left[(\overline{x} - x)^{+} - (\underline{x} - x)^{+} \right]$$

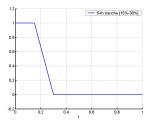


Figure: U(l) for the fifth tranche [15%-30%]

CDO Formulas

▶ Premium leg is paid by insured at stochastic rate $U_t = U(L_t)$. Price:

$$V = E_{0,\mathbf{z}} \left[\int_0^T e^{-\int_0^t r_s ds} U(L_t) dt \right].$$

▶ Insurer pays tranche of losses by default of firms. Price:

$$W = -E_{\mathbf{0},\mathbf{z}} \left[\int_{0}^{T} e^{-\int_{0}^{t} r_{s} ds} dU_{t} \right]$$

Theorem on CDOs

Theorem (CDO Pricing)

▶ Price of the premium and insurance legs:

$$V = \int_{0}^{\infty} H^{U}(x)F^{P}(x,\mathbf{z})dx, \qquad W = \int_{0}^{\infty} H^{S}(x)F^{I}(x,\mathbf{z})dx.$$

- ▶ Here $H^U(x)$, $H^S(x)$ depend on parameters of loss \tilde{L}_t and payoff functions U, S = 1 U (i.e. on tranche)
- ▶ $F^P(x, \mathbf{z}), F^I(x, \mathbf{z})$ depend only on interest rate and time change processes parameters.

Remarks

- ▶ Functions $F^P(x, \mathbf{z})$, $F^I(x, \mathbf{z})$ are computed once (and stored); all CDO tranches are obtained by integrating tranche—dependent functions $H^U(x)$, $H^S(x)$ against tranche—independent $F^P(x, \mathbf{z})$, $F^I(x, \mathbf{z})$.
- Formulas separate effects of stochastic time change (hidden in $F^P(x, \mathbf{z}), F^I(x, \mathbf{z})$) from all information about Markov chains $\tilde{\mathbf{Y}}$, conditional loss process \tilde{L}_t and payoff functions U, S (hidden in $H^U(x), H^S(x)$).
- ▶ For equal notionals, we can compute H^U , H^S exactly. For unequal or stochastic notionals, we have a number of high speed approximation schemes.

Functions H^S and F^I

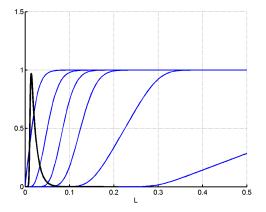


Figure: Computing the price of insurance leg

Normal Approximation Scheme

▶ When $T \times \lambda$ is not too small the normal approximation is reasonable:

$$\tilde{L}_t \stackrel{d}{\approx} L(t,\xi) = m(t) + \xi \sigma(t),$$

where ξ is Gaussian N(0,1).

▶ Mean m(t) and variance $\sigma^2(t)$

$$m(t) = \sum_{k=0}^{K} \alpha_k p_{k1}(t), \quad \alpha_k = \sum_{i=1}^{M} (1 - R_0) I\{\tilde{Y}_0^i = k\} \frac{N_i}{N}$$

$$\sigma^2(t) = \sum_{k=1}^{K} \beta_k p_{k1}(t) (1 - p_{k1}(t)), \quad \beta_k = \sum_{i=1}^{M} (1 - R_0)^2 I\{\tilde{Y}_0^i = k\} \frac{N_i^2}{N^2}$$

Normal Approximation Scheme

▶ It follows that

$$H^{U}(\tau) = 1 - H^{S}(\tau) = \frac{\sigma(\tau)}{\bar{x} - \underline{x}} \left[\tilde{\Phi} \left(\frac{\bar{x} - m(\tau)}{\sigma(\tau)} \right) - \tilde{\Phi} \left(\frac{\underline{x} - m(\tau)}{\sigma(\tau)} \right) \right]$$

▶ where

$$\tilde{\Phi}(x) = \int_{-\infty}^{x} \Phi(y) dy = x \Phi(x) + \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}},$$

▶ and
$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{y^2}{2}} dy$$
 (CDF of $N(0,1)$).

Beta vs Poisson vs Normal Approximations, Short Maturity

Beta vs Poisson vs Normal Approximations, Long Maturity

Exact and approximate schemes: relative errors

For equal notionals, we compare exact and approximate computations:

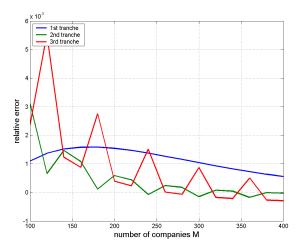


Figure: Relative error

Exact and approximate scheme: computation times

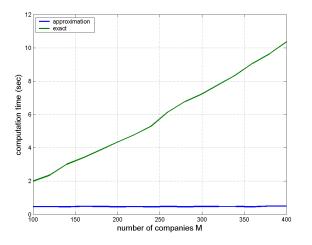


Figure: Computation time

Default Parameters

- $\triangleright \mathcal{L}_Y$ as before;
- ▶ interest rates: $\mathbf{M}_r = (0.05, 0)$; stochastic time change: $\mathbf{M}_\tau = (0.6, 1.2)$ and $m_\tau = 0.2$;
- ▶ CIR (Z^1) parameters: $a=c=0.1; Z^2$ parameters: $h_2=3,$ $\lambda_2=0.3; Z^3$ parameters: $h_3=m_{\tau}3, \lambda_3=1/3;$
- ▶ Number of firms in each rating class: [0 0 0 0 50 50 50 50];
- ► Equal notionals (we haven't got around to running unequal notionals!).

Dependence on $Z^1(0)$

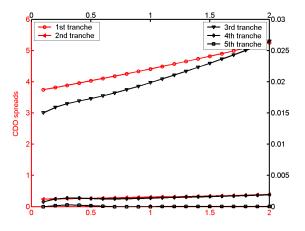


Figure: Dependence of CDO spreads on $\mathbb{Z}^1(0)$

Dependence on $Z^2(0)$

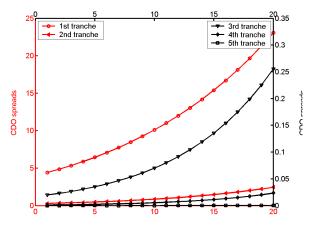


Figure: Dependence of CDO spreads on $\mathbb{Z}^2(0)$

Dependence on jump size h_2

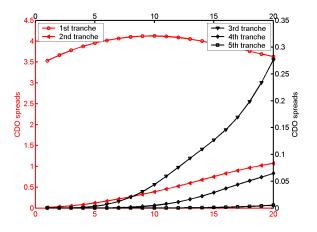


Figure: Dependence of CDO spreads on jump size h_2

Dependence on jump size h_3

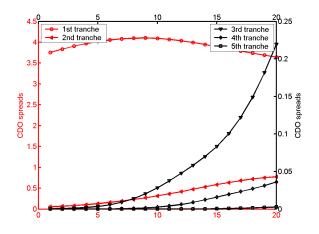


Figure: Dependence of CDO spreads on jump size h_3

Dependence on CIR volatility c

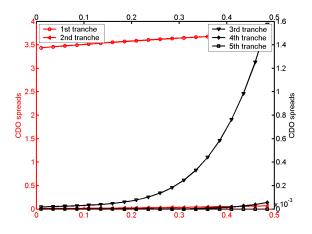


Figure: Dependence of CDO spreads on CIR volatility c

Dependence on maturity T

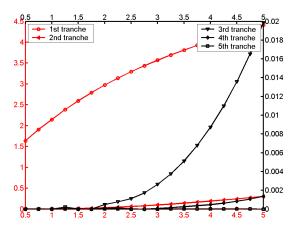


Figure: Dependence of CDO spreads on maturity T

Dependence on interest rates

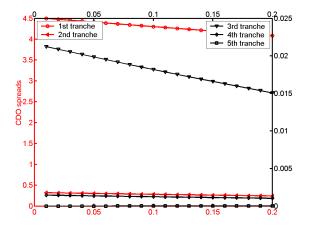


Figure: Dependence of CDO spreads interest rate

Sensitivities

- Security prices are sensitive to dynamic risk factors \tilde{Y}, Z^1, Z^2, Z^3 and model parameters $(\mathcal{L}_Y, a, c, \lambda_2, h_2, h_3, \mathbf{M}_r, \mathbf{M}_\tau, m_\tau)$.
- ▶ Delta hedging Z^1 , Z^2 means hedging general market risk; requisite derivatives of both premium and insurance legs are explicitly computable:

$$(\Delta_{V,1}, \Delta_{V,2}) = \partial_{\mathbf{z}}V = \int_{0}^{\infty} H(x)\partial_{\mathbf{z}}F^{P}(x, \mathbf{z})dx, \quad (1)$$

▶ Hedging risk factors Y amounts to protecting against risk of any individual migrations or defaults: such "firm specific risks" are difficult to hedge and are of secondary importance.

Calibration Issues

Not yet addressed!

- ▶ Suitable input data set is complicated, huge and difficult to obtain: corporate bonds are not exchange traded, trade relatively infrequently, come in many flavours, etc.
- Many model parameters to fit;
- $ightharpoonup \vec{Z}_t$ is a vector-valued *unobserved* process driving credit spreads;
- \triangleright \mathcal{L}_Y : should we use risk-neutral (they need to be calibrated) vs. historical probabilities (easy to use, but not reliable)?
- ► Extensions to non-minimal models will be needed.

Conclusion

- ▶ AMC framework gives *complete* dynamical models of multifirm credit migration and default.
- ▶ AMC is a generalization of reduced form or doubly stochastic models but includes "structural" characteristics.
- ▶ Computations are very efficient:
 - Speed for one-two firm models is comparable with intensity based models,
 - ▶ For CDO computations the speed is independent of the number of companies M,
 - \triangleright Errors across tranches decrease as M increases,
 - Typical error is less than one basis point.

Conclusion

- ▶ Flexible correlation structure;
- ► Excellent engine for scenario generation/stress testing;
- Analytical computation of the greeks;
- ► Model easily includes:
 - stochastic interest rates;
 - stochastic recovery (possibly correlated with credit spreads, interest rates);
 - multi-factor models;
 - ▶ nonexchangeable firms