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Overview

Credit risk is the risk of financial losses due to
I unexpected changes in credit quality of a counterparty;
I failure of counterparty to service their debt;
I liquidation of the counterparty.



Fundamental Question

I How much interest should be charged to a default risky
counterparty?

I Answer is expressed in terms of credit spread

S(t, T ) =
1

T − t
log

(
B

(d)
t (T )

Bt(T )

)

where B
(d)
t (T ) is price of risky zero coupon bond and

Bt(T ) is price of riskless zero coupon bond.



Understanding Credit Risk

Requires understanding and then modeling the following
fundamental quantities:

I Risk-free interest rate rt at time t;
I Time of a default “event” of the ith firm t∗i ;
I Recovery rate at time t conditioned on default: Ri

t;
I Premium investors demand as compensation for bearing

credit risk.



Intensity Based (Reduced Form) Models

I Default time t∗ modeled exogenously using stochastic
intensity λt: a nonnegative process such that

P (t∗ < t + dt|t∗ > t) = λtdt

I It is convenient to introduce “default process”

Yt = I{t∗ > t}

I Survival probability P [t∗ > t] = P [Yt = 1] = E[e−
R t
0 λsds].

I Specify a market implied dynamics for λt.
I Bond price (zero recovery):

B
(d)
t (T ) = Et[e

−
R T

t rsdsI{t∗ > T}] = Et[e
−
R T

t [rs+λs]ds].



Typical Credit Spreads in Intensity Based Models



Typical Credit Spreads in Structural Models



Affine Markov Chain model

I Idea: generalize the process Yt

I intensity based model: Yt has two states: {0, 1}

P [Yt+dt = 0|Yt = 1] = λtdt.

and 0 is an absorbing state.
I let’s introduce K + 1 states: {0, 1, 2, . . . ,K} and stochastic

intensity λt

P [Yt+dt = j|Yt = i] = Lijλtdt.

and 0 is an absorbing state.



Ingredients

I Spot interest rate rt and recovery rate Rt;
I Default process Yt, defined by

I stochastic intensity λt ≥ 0;
I the matrix of transition intensities

LY = (Lij)i,j=0...K , P [Yt+dt = j|Yt = i] = Lijλtdt.

0 is an absorbing state, thus L0j = 0

I Default time t∗: first time Yt hits absorbing state 0.



Interpretation

I intensity based model:
Yt = 1: company is not in default by time t
Yt = 0: company has defaulted by time t

I AMC model:
Yt = i, i 6= 0: company is in the credit rating i at time t
Yt = 0: company has defaulted by time t

I if K = 1, then intensity based model ≡ AMC with matrix
LY given by

LY =

(
0 0
1 −1

)



Transition probabilities

I The rating transition probabilities are given by

P [Yt = j|Y0 = y] =
K∑

i=0

qyiq̃ijE0

[
eαi

R t
0 λsds

]
.

I Intensity based model:

P [Yt = 0|Y0 = 1] = 1− E0[e
−
R t
0 λsds].



Defaultable Bonds

I Defaultable bond with zero recovery has price

B
(d)
t (T ) = Et

[
e−
R T

t rsdsI{t∗ > T}
]

=

= Bt(T )−
K∑

i=0

qyiq̃i0Et

[
e−
R T

t (rs−αiλs)ds
]

I intensity based model:

B
(d)
t (T ) = Et[e

−
R T

t (rs+λs)ds].



Intensity and Stochastic time change

I Idea: define an increasing (continuous) process
τt =

∫ t
0 λsds, thus dτt = λtdt ;

I AMC model: define a Markov chain Ỹt with generator LY ,
independent of τt. Then

P [Ỹt+dt = j|Ỹt = i] = Lijdt.

I Define Yt = Ỹτt . Then

P [Yt+dt = j|Yt = i] = Lijdτt = Lijλtdt.

I Intensity based models ≡ doubly stochastic models: Yt is a
Markov chain subordinated by a stochastic time change τt.



Choice of underlying processes

I Key idea: in all the formulas we need to compute

E
[
e−
R t
0 (rs−αiλs)ds

]
= E

[
e−
R t
0 rsds+αiτt

]
I Model rt and λt as linear combination of affine processes

Z1
t and Z2

t

rt = M1
rZ

1
t + M2

rZ
2
t = 〈Mr · Zt〉, λt = 〈Mτ · Zt〉,

for which

E
[
e−
R t
0 αZsds

]
= eΦ(t)+Z0Ψ(t)

I Model time change process as τt =
∫ t
0 λsds + mτZ

3
t , where

Z3
t is a jump process.



Choice of Zt = (Z1
t , Z

2
t ) and Z3

t

Three processes with distinct characteristics:

I Z1
t : CIR process (diffusion) with Markov generator

LZ1f(x) = a(1− x)f ′(x) + cxf ′′(x),

I Z2
t : affine process with jumps defined by Markov generator

LZ2f(x) = λ2(f(x + h)− f(x))− hλ2xf ′(x).

I Z3
t (jump part of the time change): Poisson process with

jump size h3 and intensity λ3 = 1/h3 and λ−1
3 :

Z3
t = h3Π(λ3t).



Components of time change process



Time change process τt



Building Blocks G1, G2, G3

All essential computations come from explicit formulas for the
following:

I

G1(t, z;u,v) = E0,z

[
e−
R t
0 〈u·Zs〉dse−〈v·Zt〉

]
I

G2(t, z;u,v,w) = E0,z

[
e−
R t
0 〈u·Zs〉ds〈w · Zt〉e−〈v·Zt〉

]
= −〈w,∇vG1〉.

I

G3(t; v) = E
[
e−vZ3

t

]
= exp

(
λ3t(e

−v/λ3 − 1)
)

.



Markov Generator LY

I Markov states represent Standard and Poor’s “rating
class”:

{0, 1, . . . , 7} ↔ {’default’, CCC, B, BB, BBB, A, AA, AAA}.

I Markov generator:

LY =

0
BBBBBBBBB@

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.2856 −0.4318 0.0928 0.0250 0.0142 0.0142 0.0000 0.0000
0.0753 0.0479 −0.1928 0.0568 0.0073 0.0034 0.0021 0.0000
0.0273 0.0144 0.1181 −0.2530 0.0813 0.0089 0.0025 0.0005
0.0049 0.0020 0.0174 0.0701 −0.1711 0.0713 0.0047 0.0007
0.0010 0.0000 0.0048 0.0107 0.0688 −0.1172 0.0309 0.0010
0.0000 0.0000 0.0030 0.0030 0.0105 0.0787 −0.1043 0.0091
0.0000 0.0000 0.0000 0.0031 0.0020 0.0083 0.1019 −0.1153

1
CCCCCCCCCA

I the columns of Q = (qij) are the eigenvectors of LY with
eigenvalues αi. Q̃ = (q̃ij) = Q−1.



Other parameters

I interest rates: Mr = (0.05, 0)

I stochastic time change: Mτ = (0.6, 1.2) and mτ = 0.2

I CIR (Z1) parameters: a = c = 0.1

I Z2 parameters: h2 = 3, λ2 = 0.3

I Z3 parameters: h3 = 3, λ3 = 1/3



Rating Transition Probabilities

Lemma
Rating transition probabilities for the process Yt are

P0,z,y(Yt = j) =
K∑

i=0

qyiq̃ijG1(t, z;−αiMτ ,0)G3(t,−αimτ ).



Default Density Function

Proposition

Probability density function of default is

d

dt
P0,z,y(t

∗ < t) =
K∑

i=1

qyiq̃i1

[
αiG2(t, z;−αiMτ ,0,Mτ ) +

+G1(t, z;−αiMτ ,0)λ3(e
αimτ /λ3 − 1)

]
G3(t,−αimτ ).



Default Free Bonds

Proposition

Price at time t of riskless zero–coupon bond with maturity T

Bt(T ) = Et

[
e−
R T

t rsds
]

= G1(T − t,Zt;Mr,0).



Defaultable Bonds

Proposition

1. Defaultable bond with zero recovery has price

B
(d)
t (T ) = Et,z,y

[
e−
R T

t rsdsI{t∗ > T}
]

=

Bt(T )−
K∑

i=0

qyiq̃i1G1(T − t, z;Mr − αiMτ ,0)G3(T − t,−αimτ ).

2. Defaultable bond with non-zero recovery are given by a
more complicated formula of same type.



Simulation of Credit Spread for a BB company

spreads



Simulation of Credit Spreads for all companies

spreads



Dependence of Credit Spreads on h2

spreads



Model of M Firms

I Independent processes Ỹ 1
t , . . . , Ỹ M

t , which are Markov
chains on {0, 1, 2, . . . ,K}, with 0 an absorbing state, and
with identical generators LỸ .

I Interest process rt, recovery process Rt and stochastic time
change process τt, as for one firm model.

I Credit migration processes

Y 1
t = Ỹ 1

τt
, . . . , Y M

t = Ỹ M
τt

.

I Default time t∗i is first time corresponding process Y i
t hits

absorbing state 1.



Interpretation of Z1, Z2, Z3

I

τt =

∫ t

0

(
M1

τZ
1
s + M2

τZ
2
s

)
ds + mτZ

3
t .

I Z1: “normal” economy
I Z2: clustering of defaults
I Z3: simultaneous defaults



Pairwise Joint Default Distributions

Lemma
The joint probability P0,z,yi,yj (t

∗
i < s, t∗j < t) is given by

P0,z,yi,yj (t
∗
i < s, t∗j < t) = E0,z,yi,yj

[
I{Y i

s = 1}I{Y j
t = 1}

]
=

K∑
k,l=1

qyikq̃k1qyj lq̃l1E0,z

[
eαkτs+αlτt

]
,

where the expectation E0,z,yi,yj [eαkτs+αlτt ] can be computed
explicitly.



Joint default density

Figure: Joint BB + BB default density, no jumps



Joint default density

Figure: Joint BB + BB default density, jumps in Z2



CDOs: What are they?

A large portfolio of similar bonds written on different firms is
sliced into “tranches” ordered by “seniority”. Each CDO
tranche is a separate investment vehicle with its characteristic
risk-reward.



Synthetic CDO Tranche

I Credit swap between two parties, insured and insurer.
I Two components, “premium leg” and “insurance leg” are

basic credit derivatives on total default loss of portfolio.
I Fractional loss at time t

Lt =
M∑
i=1

(1−R0)
Ni

N
I{t∗i < t}

I Here:
I M : number of firms;
I Ni: face value of bond (“notional”) of firm i;

I N =
M∑
i=1

Ni: total notional.



CDO Formulas

CDO tranche for fractional losses in a range [x, x̄] ⊂ [0, 1]:

U(x) =
1

x̄− x

[
(x̄− x)+ − (x− x)+

]

Figure: U(l) for the fifth tranche [15%-30%]



CDO Formulas

I Premium leg is paid by insured at stochastic rate
Ut = U(Lt). Price:

V = E0,z

 T∫
0

e−
R t
0 rsdsU(Lt)dt

 .

I Insurer pays tranche of losses by default of firms. Price:

W = −E0,z

 T∫
0

e−
R t
0 rsdsdUt





Theorem on CDOs

Theorem (CDO Pricing)

I Price of the premium and insurance legs:

V =

∞∫
0

HU (x)FP (x, z)dx, W =

∞∫
0

HS(x)F I(x, z)dx.

I Here HU (x),HS(x) depend on parameters of loss L̃t and
payoff functions U, S = 1− U (i.e. on tranche)

I FP (x, z), F I(x, z) depend only on interest rate and time
change processes parameters.



Remarks

I Functions FP (x, z), F I(x, z) are computed once (and
stored); all CDO tranches are obtained by integrating
tranche–dependent functions HU (x),HS(x) against
tranche–independent FP (x, z), F I(x, z).

I Formulas separate effects of stochastic time change (hidden
in FP (x, z), F I(x, z)) from all information about Markov
chains Ỹ, conditional loss process L̃t and payoff functions
U, S (hidden in HU (x),HS(x)).

I For equal notionals, we can compute HU ,HS exactly. For
unequal or stochastic notionals, we have a number of high
speed approximation schemes.



Functions HS and F I

Figure: Computing the price of insurance leg



Normal Approximation Scheme

I When T × λ is not too small the normal approximation is
reasonable:

L̃t
d
≈ L(t, ξ) = m(t) + ξσ(t),

where ξ is Gaussian N(0, 1).
I Mean m(t) and variance σ2(t)

m(t) =
K∑

k=0

αkpk1(t), αk =
M∑
i=1

(1−R0)I{Ỹ i
0 = k}Ni

N

σ2(t) =
K∑

k=1

βkpk1(t)(1− pk1(t)), βk =
M∑
i=1

(1−R0)
2I{Ỹ i

0 = k}N2
i

N2



Normal Approximation Scheme

I It follows that

HU (τ) = 1−HS(τ) =
σ(τ)

x̄− x

[
Φ̃

(
x̄−m(τ)

σ(τ)

)
− Φ̃

(
x−m(τ)

σ(τ)

)]
I where

Φ̃(x) =

∫ x

−∞
Φ(y)dy = xΦ(x) +

1√
2π

e−
x2

2 ,

I and Φ(x) = 1√
2π

∫ x
−∞ e−

y2

2 dy (CDF of N(0, 1)).



Short Maturity

Beta vs Poisson vs Normal Approximations, Short Maturity



Long Maturity

Beta vs Poisson vs Normal Approximations, Long Maturity



Exact and approximate schemes: relative errors

For equal notionals, we compare exact and approximate
computations:

Figure: Relative error



Exact and approximate scheme: computation times

Figure: Computation time



Default Parameters

I LY as before;
I interest rates: Mr = (0.05, 0); stochastic time change:

Mτ = (0.6, 1.2) and mτ = 0.2;
I CIR (Z1) parameters: a = c = 0.1; Z2 parameters: h2 = 3,

λ2 = 0.3; Z3 parameters: h3 = mτ3, λ3 = 1/3;
I Number of firms in each rating class: [0 0 0 0 50 50 50 50];
I Equal notionals (we haven’t got around to running unequal

notionals!).



Dependence on Z1(0)

Figure: Dependence of CDO spreads on Z1(0)



Dependence on Z2(0)

Figure: Dependence of CDO spreads on Z2(0)



Dependence on jump size h2

Figure: Dependence of CDO spreads on jump size h2



Dependence on jump size h3

Figure: Dependence of CDO spreads on jump size h3



Dependence on CIR volatility c

Figure: Dependence of CDO spreads on CIR volatility c



Dependence on maturity T

Figure: Dependence of CDO spreads on maturity T



Dependence on interest rates

Figure: Dependence of CDO spreads interest rate



Sensitivities

I Security prices are sensitive to dynamic risk factors
Ỹ , Z1, Z2, Z3 and model parameters
(LY , a, c, λ2, h2, h3,Mr,Mτ ,mτ ).

I Delta hedging Z1, Z2 means hedging general market risk;
requisite derivatives of both premium and insurance legs
are explicitly computable:

(∆V,1,∆V,2) = ∂zV =

∞∫
0

H(x)∂zF
P (x, z)dx, (1)

I Hedging risk factors Y amounts to protecting against risk
of any individual migrations or defaults: such “firm specific
risks” are difficult to hedge and are of secondary
importance.



Calibration Issues

Not yet addressed!
I Suitable input data set is complicated, huge and difficult to

obtain: corporate bonds are not exchange traded, trade
relatively infrequently, come in many flavours, etc.

I Many model parameters to fit;
I ~Zt is a vector-valued unobserved process driving credit

spreads;
I LY : should we use risk-neutral (they need to be calibrated)

vs. historical probabilities (easy to use, but not reliable)?
I Extensions to non-minimal models will be needed.



Conclusion

I AMC framework gives complete dynamical models of
multifirm credit migration and default.

I AMC is a generalization of reduced form or doubly
stochastic models but includes “structural” characteristics.

I Computations are very efficient:
I Speed for one-two firm models is comparable with intensity

based models,
I For CDO computations the speed is independent of the

number of companies M ,
I Errors across tranches decrease as M increases,
I Typical error is less than one basis point.



Conclusion

I Flexible correlation structure;
I Excellent engine for scenario generation/stress testing;
I Analytical computation of the greeks;
I Model easily includes:

I stochastic interest rates;
I stochastic recovery (possibly correlated with credit spreads,

interest rates);
I multi-factor models;
I nonexchangeable firms
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