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The Detection Problem

Hits: h(t)

Detected

t

Relevant: π

Collection

100%

Figure 1: Illustration of a typical detection operation. A small fraction

π of the entire collection C is of interest (relevant). An algorithm detects

a fraction t from C, out of which h(t) is relevant.
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The Typical Paradigm

New Data Results
Ranking

Training Data

Model

Supervised Learning

Figure 2: Illustration of the typical modelling and prediction process.
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The Hit Curve
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Figure 3: Illustration of some hit curves. Note that hA(t) and hB(t)

cross each other at t = t∗; hP (t) is an ideal curve produced by a perfect

algorithm; hR(t) corresponds to the case of random detection.
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The Average Precision

Let h(t) be the hit curve; let

r(t) =
h(t)

π
and p(t) =

h(t)

t
.

Then,

Average Precision =

∫

p(t)dr(t). (1)

In practice, h(t) takes values only at a finite number of points ti = i/n,

i = 1, 2, ..., n. Hence, the integral (1) is replaced with a finite sum

∫

p(t)dr(t) =

n
∑

i=1

p(i)∆r(i) (2)

where ∆r(i) = r(i) − r(i − 1).
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A Simple Example

Algorithm A Algorithm B

Item (i) Hit p(i) ∆r(i) Hit p(i) ∆r(i)

1 1 1/1 1/3 1 1/1 1/3

2 1 2/2 1/3 0 1/2 0

3 0 2/3 0 0 1/3 0

4 1 3/4 1/3 1 2/4 1/3

5 0 3/5 0 1 3/5 1/3

AP(A) =
5

∑

i=1

p(i)∆r(i) =

(

1

1
+

2

2
+

3

4

)

× 1

3
≈ 0.92.

AP(B) =

5
∑

i=1

p(i)∆r(i) =

(

1

1
+

2

4
+

3

5

)

× 1

3
= 0.70.
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Drug Discovery Data

Original data from National Cancer Institute (NCI) with label added by

GlaxoSmithKlein, Inc.

1. n = 29, 812 chemical compounds, of which only 608 are active

against the HIV virus.

2. d = 6 chemometric descriptors of the molecular structure, known as

BCUT numbers.

3. Using stratified sampling, randomly split of the data to produce a

training set and a test set (each with n = 14, 906 and 304 active

compounds).

4. Tuning parameters selected using 5-fold cross-validation on the

training set, and compare performance on the test set.
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High Throughput Screening (HTS)

Compounds

 Activity (Y)

 BCUT 6 (X6)

 BCUT 1 (X1)
Computational
   chemistry

  library
Chemical

HTS

Figure 4: Illustration of the high throughput screening process. Based

on Welch (2002).
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Origin and Background of the Main Idea

Figure 5: The ancient Chinese game of Go is a game in which each player

tries to claim as many territories as possible on the board. Image taken

from http://go.arad.ro/Introducere.html.
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Key Ingredients

Definition 1. Let x ∈ R
d be a training observation belonging to class

1; its radius of influence is defined as r = (r1, r2, ..., rd)T where

rj =
1

K

∑

w∈N(x,K)

|xj − wj |

is the average distance in the j-th dimension between x and its K

nearest class-0 neighbors. That is, every w ∈ N(x, K) belongs to the

background class.

Definition 2. f(u) is called a quasi kernel function if f(0) = 1 and

there exists a constant c > 0 such that cf(u) is a regular kernel function,

i.e.,
∫

cf(u)du = 1.
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Some Quasi Kernels
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f(u) = exp

(

−u2

2

) f(u) = 1 − |u|

|u| ≤ 1

f(u) = 1

|u| ≤ 1
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Main Methodology

1. Given a new observation z, each class-1 observation in the training

data, x, will cast a vote on z based on its radius of influence, r:

v(z;x, r) =

d
∏

j=1

f

(

zj − xj

αrj

)

where f(u) is a quasi kernel function and α, an extra global tuning

parameter (to be explained later). Default setting: α = 1.

2. The new observation will be ranked according to the average vote it

receives:

F (z) =

∑n

i=1 v(z;xi, ri)I(yi = 1)
∑n

i=1 I(yi = 1)
.

3. Since only observations in the important but rare class are eligible

to cast a vote, there is considerable computational saving (e.g., over

K-NN).
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Tuning Parameters

K: mild effects, insensitive; effect on the radius of influence not identical

in every direction.

α: stronger effects; stretches or dampens the radius of influence

identically in every direction.
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Kernel Calibration
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Figure 6: Calibrated quasi-kernels.

Effective radius of influence

is different for the triangular

and the Gaussian kernels. To

make the comparisons easier,

we calibrate as follows: Let

f(u) = exp

(

− u2

2σ2

)

g(u) = 1 − |u|,

set σ2 to

argmin

∫ 1

−1

(f(u) − g(u))2 du.

Optimal choice is σ2 ≈ 0.178.
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Radial Basis Function Networks

• A radial basis function (RBF) network has the form:

f(x) =
M
∑

m=1

βmK(x; µm, rm),

where K(x; µ, r) is a kernel function with center µ and radius (or

bandwidth) vector r = (r1, r2, ..., rd)T .

• For example, a common choice of the kernel is

K(x; µ, r) =
d

∏

j=1

φ (xj ; µj , rj)

where φ(x; µ, r) is the density function for N(µ, r2).
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Separating Hyperplanes

• Given xi ∈ R
d, a hyperplane in R

d is characterized by

f(x) = β
T
x + β0 = 0.

• Given yi ∈ {−1, +1} (two classes), a hyperplane is a separating

hyperplane if there exists c > 0 such that

yi(β
T
xi + β0) ≥ c ∀i.

• A hyperplane can be reparameterized by scaling, e.g.,

β
T
x + β0 = 0 is the same as s(βT

x + β0) = 0.

• A separating hyperplane satisfying

yi(β
T
xi + β0) ≥ 1 ∀i

(i.e., scaled so that c = 1) is sometimes called a canonical separating

hyperplane (Cristianini and Shawe-Taylor 2000).
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Separating Hyperplanes and Margins

Margin (Worse)

Margin (Better)

Figure 7: Two separating hyperplanes, one with a larger margin than the

other.
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The Support Vector Machine

• It can be calculated that a canonical separating hyperplanes has

margin equal to 1

‖β‖
.

• The support vector machine (SVM) finds a “best” (maximal

margin) canonical separating hyperplane to separate the two classes

(labelled +1 and −1) by solving

min
1

2
‖β‖2 + γ

n
∑

i=1

ξi

s.t. ξi ≥ 0 and yi(β
T
xi + β0) ≥ 1 − ξi ∀i.
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SVM: Characterizing the Solution

• The solution for β is characterized by

β̂ =
∑

i∈SV

α̂iyixi,

where α̂i ≥ 0 (i = 1, 2, ..., n) are solutions to the dual optimization

problem and SV, the set of “support vectors” with α̂i > 0 strictly

positive.

• This means the resulting hyperplane can be written as

f̂(x) = β̂
T
x + β̂0 =

∑

i∈SV

α̂iyix
T
i x + β̂0 = 0.
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SVMs and RBF Networks

• Can replace the inner product xT
i x with a kernel function K(x;xi)

to get a nonlinear decision boundary:

f̂(x) =
∑

i∈SV

α̂iyiK(x;xi) + β̂0 = 0.

The boundary is linear in the space of h(x) where h(·) is such that

K(u;v) = 〈h(u), h(v)〉 is the inner product in the space of h(x).

• Hence SVM can be viewed as an automatic way of constructing an

RBF network (Schölkopf et al. 1997).
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Performance Results: Drug Discovery Data

Index of Split
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The original data set is

randomly split by stratified

sampling for four times to

produce 4 different train-

ing and test sets. Each

time, models are built on

the training set with tun-

ing parameters selected by

5-fold cross-validation and

tested on the test set.

Copyright c© 2004 by Mu Zhu - 23 -



'

&

$

%

Performance Results: ANOVA Set-up

Do a simple ANOVA comparison by constructing four orthogonal

contrasts:

C1 =
µT + µG

2 − µU + µK + µS

3 ,

C2 = µS − µK + µU

2 ,

C3 = µU − µK ,

C4 = µG − µT ,

where µK , µS , µU , µT and µG are the average result of K-NN, SVM, and

our RBF method using the uniform kernel, the triangular kernel and the

Gaussian kernel, respectively.
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Performance Results: ANOVA Summary

Source SS (×10−4) df MS (×10−4) F0 P-Value

Methods

C1 203.737 1 203.737 380.050 < 0.0001

C2 17.854 1 17.854 33.304 < 0.0001

C3 0.036 1 0.036 0.068 0.7987

C4 0.140 1 0.140 0.262 0.6180

+) 221.768 4 55.442 103.42 < 0.0001

Splits 15.318 3 5.106 9.525 0.0017

Error 6.433 12 0.536

Total 243.519 19

Copyright c© 2004 by Mu Zhu - 25 -



'

&

$

%

Hit Curves: Drug Discovery Data
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Figure 8: Only the initial part of the curves (up to n = 500) are shown.
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The Number of SVs Used by SVM

Number of Number of

Inactive SVs Active SVs

Split 1 12475 300

Split 2 12394 300

Split 3 12433 299

Split 4 3091 301

Total Possible 14602 304
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A Statistical Explanation

• The “best” score function should be the posterior probability:

f(x) ≡ P (y = 1|x) =
π1p1(x)

π1p1(x) + π0p0(x)
. (3)

• In order to rank items from a new data set {xi; i = 1, 2, ..., N}, it is

clear that a very accurate estimate of f(xi) is not crucial as long as

f(xi) ranks these observations in the correct order. That is, any

monotonic transformation of f will do.

• Moreover, for detection problems it can often be assumed that the

density for the background class, p0(x), is relatively flat when

compared with p1(x).
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Statistical Explanation (cont’d)

• If p0 is a very flat, i.e., close to being a constant everywhere, it is

clear from (3) that we can arbitrarily put any positive number in

place of p0 without affecting the ordering of f(xi).

• This means we no longer need to estimate p0; the potential saving

here is significant since the background class 0 is actually the

majority class.

• In reality, p0 is not a constant and its surface will have some small

ripples.

• What is the effect of these ripples on the function f?
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Examining the Ripple Effects
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Figure 9: Illustration of the ripple effect. Left: Density functions. Right:

The posterior probability.

Copyright c© 2004 by Mu Zhu - 30 -



'

&

$

%

In order to build a predictive model for

statistical detection problems,

it suffices to

+ model the rare (but important) class alone and

+ make local adjustments for the two ripple effects.
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The Quasi Kernel Adjusts for the β-effect

• Take a proper kernel function belonging to a location-scale family:

1

r
f

( z − x

r

)

.

Can explicitly parameterize the two ripple effects as follows:

rβ′ 1

αr
f

( z − x

αr

)

∝ rβ′−1f
( z − x

αr

)

≡ rβf
( z − x

αr

)

• Using quasi kernel functions, we have effectively decided that β = 0,

which is equivalent to (implicitly) choosing β ′ = 1.

• If one regards an RBF network using proper kernel functions as a

mixture model, then our RBF network using quasi kernel functions

can be seen as scaling each mixture component by a factor

proportional to r and hence adjusting for the β-effect.

• But is r the right scaling factor? Could it be r2 or
√

r?
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Evidence: r Is the Right Scaling Factor
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Figure 10: Choosing α and β (while fixing K = 5) using 5-fold cross-

validation on the training data.
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Some Ongoing Work

1. Want to produce empirical evidence for the statistical explanation

on the drug discovery problem.

2. Want to turn the statistical explanation into more formal

statements.

3. Want to modify the algorithm to implement more explicitly what

the “theory” suggests.
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