

An Adaptive Radial Basis Function Network Model for Statistical Detection

Mu Zhu
University of Waterloo

Acknowledgment

- Wanhua Su.
- Hugh A. Chipman.

Agenda

- 1. The detection problem.
- 2. Average precision.
- 3. Drug discovery and high throughput screening.
- 4. Methodology.
- 5. Radial basis function networks.
- 6. Support vector machines.
- 7. Results.
- 8. A statistical explanation.
- 9. Some ongoing work.

The Detection Problem

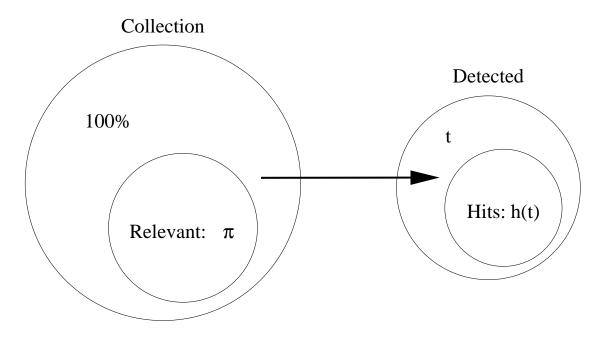


Figure 1: Illustration of a typical detection operation. A small fraction π of the entire collection \mathcal{C} is of interest (relevant). An algorithm detects a fraction t from \mathcal{C} , out of which h(t) is relevant.

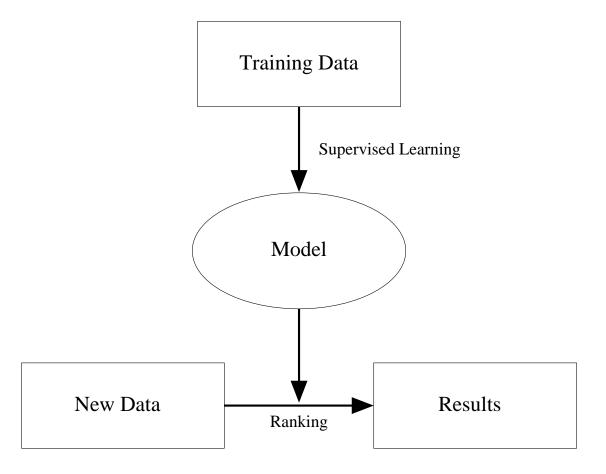


Figure 2: Illustration of the typical modelling and prediction process.

The Hit Curve

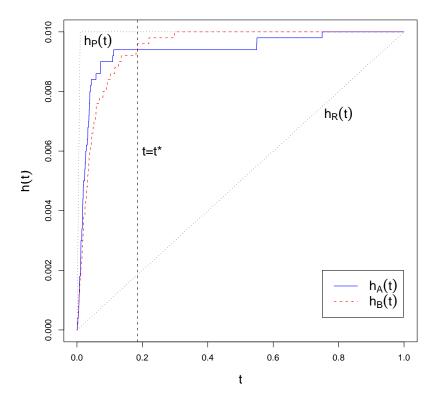


Figure 3: Illustration of some hit curves. Note that $h_A(t)$ and $h_B(t)$ cross each other at $t = t^*$; $h_P(t)$ is an ideal curve produced by a perfect algorithm; $h_R(t)$ corresponds to the case of random detection.

The Average Precision

Let h(t) be the hit curve; let

$$r(t) = \frac{h(t)}{\pi}$$
 and $p(t) = \frac{h(t)}{t}$.

Then,

Average Precision =
$$\int p(t)dr(t)$$
. (1)

In practice, h(t) takes values only at a finite number of points $t_i = i/n$, i = 1, 2, ..., n. Hence, the integral (1) is replaced with a finite sum

$$\int p(t)dr(t) = \sum_{i=1}^{n} p(i)\Delta r(i)$$
(2)

where $\Delta r(i) = r(i) - r(i-1)$.

A Simple Example

	Algorithm A			Algorithm B		
Item (i)	Hit	p(i)	$\Delta r(i)$	Hit	p(i)	$\Delta r(i)$
1	1	1/1	1/3	1	1/1	1/3
2	1	2/2	1/3	0	1/2	0
3	0	2/3	0	0	1/3	0
4	1	3/4	1/3	1	2/4	1/3
5	0	3/5	0	1	3/5	1/3

$$AP(A) = \sum_{i=1}^{5} p(i)\Delta r(i) = \left(\frac{1}{1} + \frac{2}{2} + \frac{3}{4}\right) \times \frac{1}{3} \approx 0.92.$$

AP(B) =
$$\sum_{i=1}^{5} p(i)\Delta r(i) = \left(\frac{1}{1} + \frac{2}{4} + \frac{3}{5}\right) \times \frac{1}{3} = 0.70.$$

Drug Discovery Data

Original data from National Cancer Institute (NCI) with label added by GlaxoSmithKlein, Inc.

- 1. n = 29,812 chemical compounds, of which only 608 are active against the HIV virus.
- 2. d = 6 chemometric descriptors of the molecular structure, known as BCUT numbers.
- 3. Using stratified sampling, randomly split of the data to produce a training set and a test set (each with n = 14,906 and 304 active compounds).
- 4. Tuning parameters selected using 5-fold cross-validation on the training set, and compare performance on the test set.

High Throughput Screening (HTS)

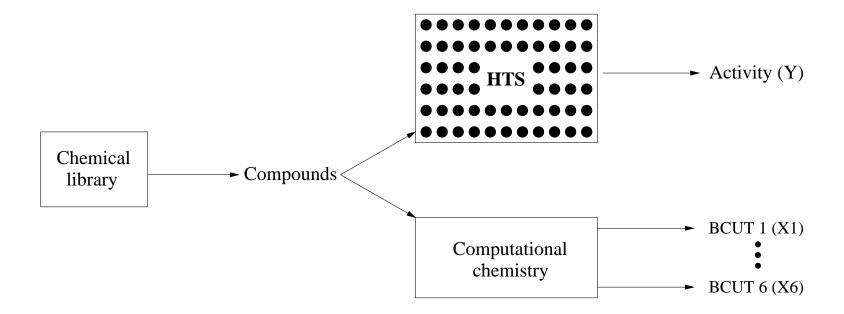


Figure 4: Illustration of the high throughput screening process. Based on Welch (2002).

Origin and Background of the Main Idea

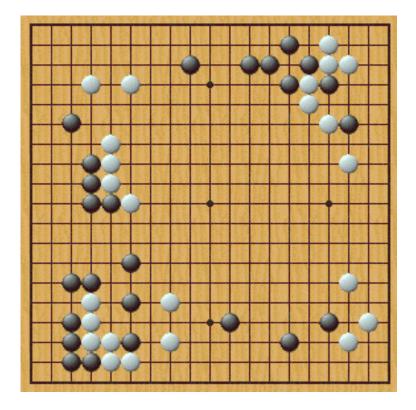


Figure 5: The ancient Chinese game of Go is a game in which each player tries to claim as many territories as possible on the board. Image taken from http://go.arad.ro/Introducere.html.

Key Ingredients

Definition 1. Let $\mathbf{x} \in \mathbb{R}^d$ be a training observation belonging to class 1; its radius of influence is defined as $\mathbf{r} = (r_1, r_2, ..., r_d)^T$ where

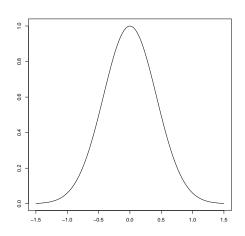
$$r_j = \frac{1}{K} \sum_{\mathbf{w} \in N(\mathbf{x}, K)} |x_j - w_j|$$

is the average distance in the j-th dimension between \mathbf{x} and its K nearest class-0 neighbors. That is, every $\mathbf{w} \in N(\mathbf{x}, K)$ belongs to the background class.

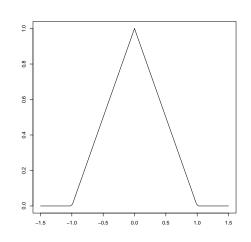
Definition 2. f(u) is called a *quasi kernel function* if f(0) = 1 and there exists a constant c > 0 such that cf(u) is a regular kernel function, i.e., $\int cf(u)du = 1$.

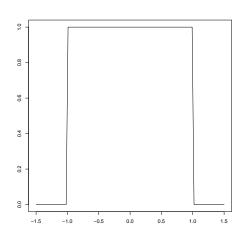
Some Quasi Kernels

Gaussian



Triangular





$$f(u) = \exp\left(-\frac{u^2}{2}\right)$$

$$f(u) = 1 - |u|$$
$$|u| \le 1$$

$$f(u) = 1$$
$$|u| \le 1$$

Main Methodology

1. Given a new observation \mathbf{z} , each class-1 observation in the training data, \mathbf{x} , will cast a vote on \mathbf{z} based on its radius of influence, \mathbf{r} :

$$v(\mathbf{z}; \mathbf{x}, \mathbf{r}) = \prod_{j=1}^{d} f\left(\frac{z_j - x_j}{\alpha r_j}\right)$$

where f(u) is a quasi kernel function and α , an extra global tuning parameter (to be explained later). Default setting: $\alpha = 1$.

2. The new observation will be ranked according to the average vote it receives:

$$F(\mathbf{z}) = \frac{\sum_{i=1}^{n} v(\mathbf{z}; \mathbf{x_i}, \mathbf{r_i}) I(y_i = 1)}{\sum_{i=1}^{n} I(y_i = 1)}.$$

3. Since only observations in the important but rare class are eligible to cast a vote, there is considerable computational saving (e.g., over K-NN).

Tuning Parameters

K: mild effects, insensitive; effect on the radius of influence not identical in every direction.

 α : stronger effects; stretches or dampens the radius of influence identically in every direction.

Kernel Calibration

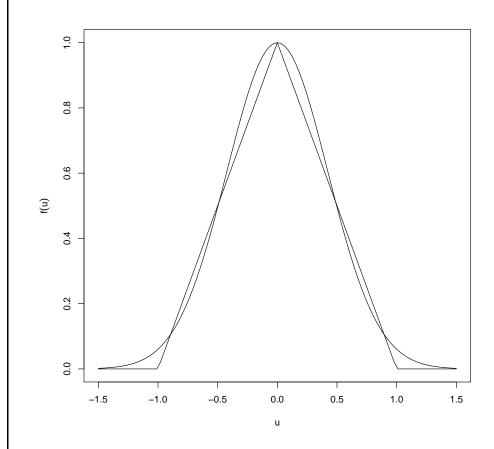


Figure 6: Calibrated quasi-kernels.

Effective radius of influence is different for the triangular and the Gaussian kernels. To make the comparisons easier, we calibrate as follows: Let

$$f(u) = \exp\left(-\frac{u^2}{2\sigma^2}\right)$$
$$g(u) = 1 - |u|,$$

set σ^2 to

argmin
$$\int_{-1}^{1} (f(u) - g(u))^2 du$$
.

Optimal choice is $\sigma^2 \approx 0.178$.

Radial Basis Function Networks

• A radial basis function (RBF) network has the form:

$$f(\mathbf{x}) = \sum_{m=1}^{M} \beta_m K(\mathbf{x}; \boldsymbol{\mu}_m, \mathbf{r}_m),$$

where $K(\mathbf{x}; \boldsymbol{\mu}, \mathbf{r})$ is a kernel function with center $\boldsymbol{\mu}$ and radius (or bandwidth) vector $\mathbf{r} = (r_1, r_2, ..., r_d)^T$.

• For example, a common choice of the kernel is

$$K(\mathbf{x}; \boldsymbol{\mu}, \mathbf{r}) = \prod_{j=1}^{d} \phi(x_j; \mu_j, r_j)$$

where $\phi(x; \mu, r)$ is the density function for $N(\mu, r^2)$.

Separating Hyperplanes

• Given $\mathbf{x}_i \in \mathbb{R}^d$, a hyperplane in \mathbb{R}^d is characterized by

$$f(\mathbf{x}) = \boldsymbol{\beta}^T \mathbf{x} + \beta_0 = 0.$$

• Given $y_i \in \{-1, +1\}$ (two classes), a hyperplane is a separating hyperplane if there exists c > 0 such that

$$y_i(\boldsymbol{\beta}^T \mathbf{x}_i + \beta_0) \ge c \quad \forall i.$$

• A hyperplane can be reparameterized by scaling, e.g.,

$$\boldsymbol{\beta}^T \mathbf{x} + \beta_0 = 0$$
 is the same as $s(\boldsymbol{\beta}^T \mathbf{x} + \beta_0) = 0$.

• A separating hyperplane satisfying

$$y_i(\boldsymbol{\beta}^T \mathbf{x}_i + \beta_0) \ge 1 \quad \forall i$$

(i.e., scaled so that c=1) is sometimes called a canonical separating hyperplane (Cristianini and Shawe-Taylor 2000).

Separating Hyperplanes and Margins

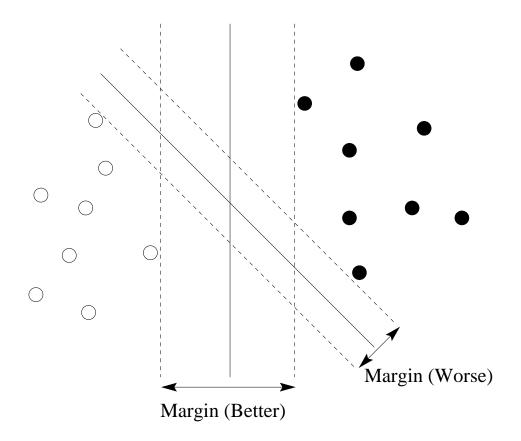


Figure 7: Two separating hyperplanes, one with a larger margin than the other.

The Support Vector Machine

- It can be calculated that a canonical separating hyperplanes has margin equal to $\frac{1}{\|\beta\|}$.
- The support vector machine (SVM) finds a "best" (maximal margin) canonical separating hyperplane to separate the two classes (labelled +1 and -1) by solving

$$\min \quad \frac{1}{2} \|\boldsymbol{\beta}\|^2 + \gamma \sum_{i=1}^n \xi_i$$

s.t.
$$\xi_i \geq 0$$
 and $y_i(\boldsymbol{\beta}^T \mathbf{x}_i + \beta_0) \geq 1 - \xi_i \quad \forall i$.

SVM: Characterizing the Solution

• The solution for β is characterized by

$$\hat{\boldsymbol{\beta}} = \sum_{i \in SV} \hat{\alpha}_i y_i \mathbf{x}_i,$$

where $\hat{\alpha}_i \geq 0$ (i = 1, 2, ..., n) are solutions to the dual optimization problem and SV, the set of "support vectors" with $\hat{\alpha}_i > 0$ strictly positive.

• This means the resulting hyperplane can be written as

$$\hat{f}(\mathbf{x}) = \hat{\boldsymbol{\beta}}^T \mathbf{x} + \hat{\beta}_0 = \sum_{i \in SV} \hat{\alpha}_i y_i \mathbf{x}_i^T \mathbf{x} + \hat{\beta}_0 = 0.$$

SVMs and RBF Networks

• Can replace the inner product $\mathbf{x}_i^T \mathbf{x}$ with a kernel function $K(\mathbf{x}; \mathbf{x}_i)$ to get a nonlinear decision boundary:

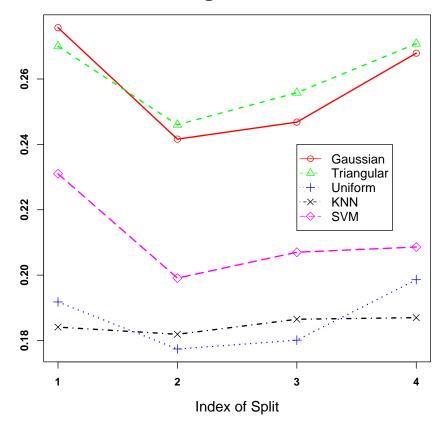
$$\hat{f}(\mathbf{x}) = \sum_{i \in SV} \hat{\alpha}_i y_i K(\mathbf{x}; \mathbf{x}_i) + \hat{\beta}_0 = 0.$$

The boundary is linear in the space of $h(\mathbf{x})$ where $h(\cdot)$ is such that $K(\mathbf{u}; \mathbf{v}) = \langle h(\mathbf{u}), h(\mathbf{v}) \rangle$ is the inner product in the space of $h(\mathbf{x})$.

• Hence SVM can be viewed as an automatic way of constructing an RBF network (Schölkopf *et al.* 1997).

Performance Results: Drug Discovery Data

Average Precision



The original data set is randomly split by stratified sampling for four times to produce 4 different training and test sets. Each time, models are built on the training set with tuning parameters selected by 5-fold cross-validation and tested on the test set.

Performance Results: ANOVA Set-up

Do a simple ANOVA comparison by constructing four orthogonal contrasts:

$$C_{1} = \frac{\mu_{T} + \mu_{G}}{2} - \frac{\mu_{U} + \mu_{K} + \mu_{S}}{3},$$

$$C_{2} = \mu_{S} - \frac{\mu_{K} + \mu_{U}}{2},$$

$$C_{3} = \mu_{U} - \mu_{K},$$

$$C_{4} = \mu_{G} - \mu_{T},$$

where $\mu_K, \mu_S, \mu_U, \mu_T$ and μ_G are the average result of K-NN, SVM, and our RBF method using the uniform kernel, the triangular kernel and the Gaussian kernel, respectively.

Performance Results: ANOVA Summary

Source	SS ($\times 10^{-4}$)	df	$MS (\times 10^{-4})$	F_0	P-Value
Methods					_
C_1	203.737	1	203.737	380.050	< 0.0001
C_2	17.854	1	17.854	33.304	< 0.0001
C_3	0.036	1	0.036	0.068	0.7987
C_4	0.140	1	0.140	0.262	0.6180
+)	221.768	4	55.442	103.42	< 0.0001
Splits	15.318	3	5.106	9.525	0.0017
Error	6.433	12	0.536		
Total	243.519	19			

Hit Curves: Drug Discovery Data

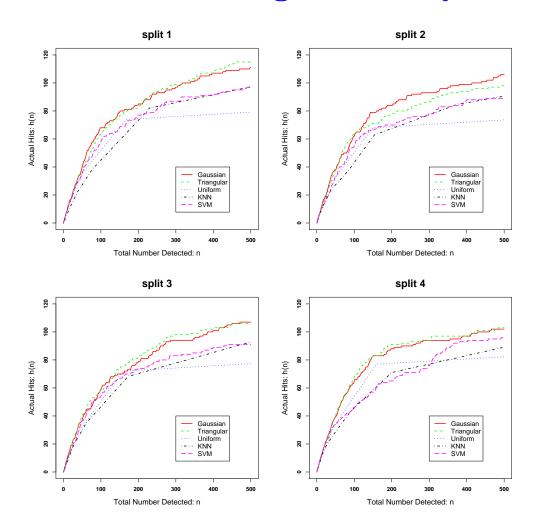


Figure 8: Only the initial part of the curves (up to n = 500) are shown.

The Number of SVs Used by SVM

	Number of	Number of	
	Inactive SVs	Active SVs	
Split 1	12475	300	
Split 2	12394	300	
Split 3	12433	299	
Split 4	3091	301	
Total Possible	14602	304	

A Statistical Explanation

• The "best" score function should be the posterior probability:

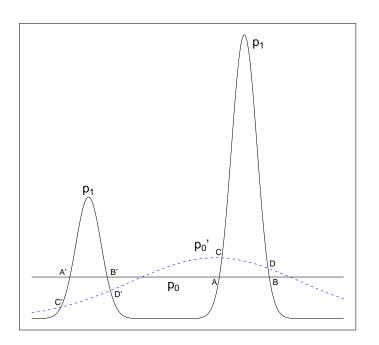
$$f(\mathbf{x}) \equiv P(y=1|\mathbf{x}) = \frac{\pi_1 p_1(\mathbf{x})}{\pi_1 p_1(\mathbf{x}) + \pi_0 p_0(\mathbf{x})}.$$
 (3)

- In order to rank items from a new data set $\{\mathbf{x}_i; i = 1, 2, ..., N\}$, it is clear that a very accurate estimate of $f(\mathbf{x}_i)$ is not crucial as long as $f(\mathbf{x}_i)$ ranks these observations in the correct order. That is, any monotonic transformation of f will do.
- Moreover, for detection problems it can often be assumed that the density for the background class, $p_0(\mathbf{x})$, is relatively flat when compared with $p_1(\mathbf{x})$.

Statistical Explanation (cont'd)

- If p_0 is a very flat, i.e., close to being a constant everywhere, it is clear from (3) that we can arbitrarily put any positive number in place of p_0 without affecting the ordering of $f(\mathbf{x}_i)$.
- This means we no longer need to estimate p_0 ; the potential saving here is significant since the background class 0 is actually the majority class.
- In reality, p_0 is not a constant and its surface will have some small ripples.
- What is the effect of these ripples on the function f?

Examining the Ripple Effects



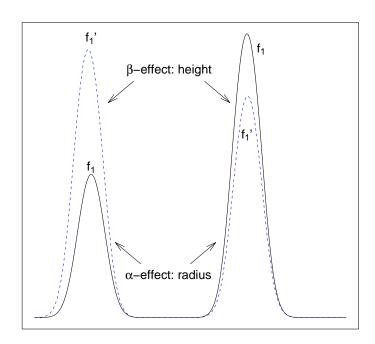


Figure 9: Illustration of the ripple effect. Left: Density functions. Right: The posterior probability.

In order to build a predictive model for statistical detection problems, it suffices to

- model the rare (but important) class alone and
- make local adjustments for the two ripple effects.

The Quasi Kernel Adjusts for the β -effect

• Take a proper kernel function belonging to a location-scale family:

$$\frac{1}{r}f\left(\frac{z-x}{r}\right)$$
.

Can explicitly parameterize the two ripple effects as follows:

$$r^{\beta'} \frac{1}{\alpha r} f\left(\frac{z-x}{\alpha r}\right) \propto r^{\beta'-1} f\left(\frac{z-x}{\alpha r}\right) \equiv r^{\beta} f\left(\frac{z-x}{\alpha r}\right)$$

- Using quasi kernel functions, we have effectively decided that $\beta = 0$, which is equivalent to (implicitly) choosing $\beta' = 1$.
- If one regards an RBF network using proper kernel functions as a mixture model, then our RBF network using quasi kernel functions can be seen as scaling each mixture component by a factor proportional to r and hence adjusting for the β -effect.
- But is r the right scaling factor? Could it be r^2 or \sqrt{r} ?

Evidence: r Is the Right Scaling Factor

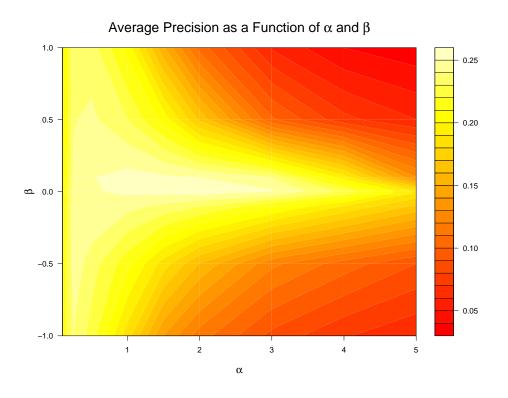


Figure 10: Choosing α and β (while fixing K=5) using 5-fold cross-validation on the training data.

Some Ongoing Work

- 1. Want to produce empirical evidence for the statistical explanation on the drug discovery problem.
- 2. Want to turn the statistical explanation into more formal statements.
- 3. Want to modify the algorithm to implement more explicitly what the "theory" suggests.

References

- Cristianini, N. and Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines and Other Kernel-based Learning Methods.

 Cambridge University Press.
- Schölkopf, B., Sung, K. K., Burges, C. J. C., Girosi, F., Niyogi, P., Poggio, T., and Vapnik, V. (1997). Comparing support vector machines with gaussian kernels to radial basis function classifiers. *IEEE Transactions on Signal Processing*, **45**(11), 2758–2765.
- Welch, W. (2002). Computational Exploration of Data. Course Notes, University of Waterloo.
- Zhu, M. (2004). Recall, precision and average precision. Working Paper 2004-09, Department of Statistics and Actuarial Science, University of Waterloo.