Data Mining for Outliers

Ruben Zamar

Department of Statistics

University of British Columbia
Vancouver, Canada

William J. Welch
Fei Yuan
Yi Lin
Hui Shen
Guohua Yan Mohua Podder

OUTLINE

- Robust Data Mining?

Finding Homologous Proteins

Finding the Needle Outside the Haystack

TYPICAL STEPS IN DATA MINING

TYPICAL STEPS IN DATA MINING

- DEFINING THE MINING GOAL

TYPICAL STEPS IN DATA MINING

- DEFINING THE MINING GOAL
- CHOOSING A SCORING SCHEME

TYPICAL STEPS IN DATA MINING

> DEFINING THE MINING GOAL
> CHOOSING A SCORING SCHEME
> NUMERICAL IMPLEMENTATION

A ROBUSTNESS ISSUE

Try to achieve the goal all the time

Try to achieve the goal most of the time

TARGET POPULATION

1000 Future Examples

TRAINING SAMPLE

50 Training Examples

LINEAR PREDICTION

LINEAR PREDICTION

- Prediction of Y using X

LINEAR PREDICTION

- Prediction of Y using X
> Try to perform well on all future predictions

LINEAR PREDICTION

- Prediction of Y using X
> Try to perform well on all future predictions
> Minimize

$$
\sum_{i=1}^{50}\left(y_{i}-a-b x_{i}\right)^{2}
$$

LS PREDICTION EQUATION

Least Squares Fit

A ROBUST APPROACH

A ROBUST APPROACH

- Construct an equation that works well on the majority of the future predictions

A ROBUST APPROACH

- Construct an equation that works well on the majority of the future predictions
- Minimize trimmed squared-prediction error

A ROBUST APPROACH

- Construct an equation that works well on the majority of the future predictions
- Minimize trimmed squared-prediction error

$$
\begin{aligned}
r_{i} & =\left(y_{i}-a-b x_{i}\right)^{2} \\
r_{(1)} & \leq r_{(2)} \leq \cdots \leq r_{(50)}
\end{aligned}
$$

A ROBUST APPROACH

- Construct an equation that works well on the majority of the future predictions
- Minimize trimmed squared-prediction error

$$
\begin{aligned}
r_{i} & =\left(y_{i}-a-b x_{i}\right)^{2} \\
r_{(1)} & \leq r_{(2)} \leq \cdots \leq r_{(50)} \\
R(a, b) & =\min _{a, b} \sum_{i=1}^{30} r_{(i)}(a, b)
\end{aligned}
$$

Least Trimmed Squares Fit

ABSOLUTE PREDICTION ERROR

Q-Q PLOT

CONCLUSION

CONCLUSION

AN ARGUABLY BETTER PREDICTION STRATEGY RESULTED FROM:

CONCLUSION

AN ARGUABLY BETTER PREDICTION STRATEGY RESULTED FROM:

1) A MORE MODEST PREDICTION GOAL

CONCLUSION

AN ARGUABLY BETTER PREDICTION STRATEGY RESULTED FROM:

1) A MORE MODEST PREDICTION GOAL

2) A MORE ROBUST SCORING PROCEDURE

SEARCHING FOR HOMOLOGOUS PROTEINS (SUPERVISED LEARNING)

SEARCHING FOR HOMOLOGOUS PROTEINS (SUPERVISED LEARNING)

- DATA (from the KDD Data Cup 2004)

SEARCHING FOR HOMOLOGOUS PROTEINS (SUPERVISED LEARNING)

- DATA (from the KDD Data Cup 2004)
- 74 features (variables) measured on 145,751 proteins (cases)

SEARCHING FOR HOMOLOGOUS PROTEINS (SUPERVISED LEARNING)

- DATA (from the KDD Data Cup 2004)
- 74 features (variables) measured on 145,751 proteins (cases)
- Proteins are grouped into 153 blocks corresponding to 153 different native sequences

SEARCHING FOR HOMOLOGOUS PROTEINS

> FEATURES

- Length of alignment
- Percentage of sequence identity
- Z score for global sequence alignment
- Several scores of local sequence alignment
- http://kodiak.cs.cornell.edu/kddcup/protein_description.pdf

SEARCHING FOR HOMOLOGOUS PROTEINS

- Block Size (Number of Candidate Proteins per Block)
- Smallest Block Size = 620,
- Largest Block Size = 1244,
- Median Block Size = 962

SEARCHING FOR HOMOLOGOUS PROTEINS

- Percentage of Homologous Proteins per Block (hits)
- Smallest Percentage $=0.08 \%$
- Largest Percentage $=5.8 \%$
- Median Percentage $=0.04 \%$
- 70% of the blocks have less than 1% homologous proteins

BLOCKS SIZE AND PERCENTAGE OF TARGET PROTEINS

SEARCHING FOR HOMOLOGOUS PROTEINS

- GOAL: to predict which proteins are homologous to each of the 153 "target" native sequences.
- TASK: prioritize the candidate proteins in each block from top to bottom

SEARCHING FOR HOMOLOGOUS PROTEINS

- GOAL: to predict which proteins are homologous to each of the 153 "target" native sequences.
- TASK: prioritize the candidate proteins in each block from top to bottom
- Proteins in each block must be assigned probabilities of being homologous
- Proteins in each block are then ranked from first to last according to these probabilities

PERFORMANCE MEASURES

PERFORMANCE MEASURES

TOPK

$$
T O P_{k}=\max \left\{t_{j}: j=1,2, \ldots, k\right\}
$$

TOPK

$$
T O P_{k}=\max \left\{t_{j}: j=1,2, \ldots, k\right\}
$$

For example

$T O P_{1}=1$, IF TOP RANKED IS A HIT

TOPK

$$
T O P_{k}=\max \left\{t_{j}: j=1,2, \ldots, k\right\}
$$

For example

$$
T O P_{1}=1, \quad \text { IF TOP RANKED IS A HIT }
$$

Average $T O P_{1}$ (over blocks) is a robust performance measure.

RANK OF THE LAST POSITIVE

$$
R K L=\max \left\{j: t_{j}=1\right\}
$$

RANK OF THE LAST POSITIVE

$$
R K L=\max \left\{j: t_{j}=1\right\}
$$

Average RKL (over blocks) is a non-robust performance measure.

MEAN SQUARED ERROR

$$
M S E=\frac{1}{n} \sum_{j=1}^{n}\left(\pi_{j}-t_{j}\right)^{2}
$$

AVERAGE PRECISION

$$
A P=\frac{\sum_{j \in J}\left(\frac{1}{j} \sum_{k=1}^{j} t_{k}\right)}{\sum_{j=1}^{n} t_{j}}
$$

$$
J=\left\{j: t_{j}=1\right\}
$$

OUR ANALYSIS

- One, two and three-dimensional data exploration showed that
- Some features are highly correlated
- Some variables seemed promising and others seemed random noise
- No obvious pattern differentiates the blocks

OUR ANALYSIS

- One, two and three-dimensional data exploration showed that
- Some features are highly correlated
- Some variables seemed promising and others seemed random noise
- No obvious pattern differentiates the blocks
- Tried different classification strategies including
- Bayesian factor based on one-dimensional kernel density estimates
- Linear and quadratic discriminant analysis
- Recursive partitioning
- Nearest neighbor
- Logistic regression
- etc.

OUR RESULTS

OUR RESULTS

Selection of variables appeared to be much more
important than the selection of classification tools.

OUR RESULTS

- Selection of variables appeared to be much more important than the selection of classification tools.
- Restricted attention to logistic regression and TOP1, which is at the same time the most challenging and robust measure

OUR RESULTS

- Selection of variables appeared to be much more important than the selection of classification tools.
- Restricted attention to logistic regression and TOP1, which is at the same time the most challenging and robust measure
- Used two fold cross-validation and stepwise forward selection to choose variables

OUR RESULTS

- Selection of variables appeared to be much more important than the selection of classification tools.
- Restricted attention to logistic regression and TOP1, which is at the same time the most challenging and robust measure
- Used two fold cross-validation and stepwise forward selection to choose variables
- Performance improved as variables entered the model up to a certain point and then begun to deteriorate

OUR RESULTS

- Selection of variables appeared to be much more important than the selection of classification tools.
- Restricted attention to logistic regression and TOP1, which is at the same time the most challenging and robust measure
- Used two fold cross-validation and stepwise forward selection to choose variables
- Performance improved as variables entered the model up to a certain point and then begun to deteriorate
- Variables: $X_{53}, X_{63}, X_{38}, X_{58}, X_{63}, X_{35}, X_{15}, X_{8}, X_{12}, X_{26}, X_{36}$

OUR RESULTS

PERFORMANCE	OUR	RANK	THE BEST
TOP1	0.8867	8	0.9200
RMS	0.0383	6	0.0350
RKL	52.8466	4	45.6200
APR	0.8206	6	0.8412

FINDING THE NEEDLE OUTSIDE THE HAYSTACK

Now we consider a different problem:

FINDING THE NEEDLE OUTSIDE THE HAYSTACK

Now we consider a different problem:

FINDING HOMOLOGOUS PROTEINS

WITHOUT A TRAINING SAMPLE

LOOKING OUTSIDE THE HAYSTACK

LOOKING OUTSIDE THE HAYSTACK

- Homologous proteins are a small minority in a see of candidate proteins.

LOOKING OUTSIDE THE HAYSTACK

- Homologous proteins are a small minority in a see of candidate proteins.
- Their features may then appear as "outliers" in several low dimensional spaces.

LOOKING OUTSIDE THE HAYSTACK

> Homologous proteins are a small minority in a see of candidate proteins.

- Their features may then appear as "outliers" in several low dimensional spaces.
- STRATEGY: for each pair of variables, calculate Mahalanobis distances using a fast and robust bivariate covariance matrix.

LOOKING OUTSIDE THE HAYSTACK

- Homologous proteins are a small minority in a see of candidate proteins.
- Their features may then appear as "outliers" in several low dimensional spaces.
- STRATEGY: for each pair of variables, calculate Mahalanobis distances using a fast and robust bivariate covariance matrix.
- We used coordinate-wise medians the quadrant correlation.

QUADRANT CORRELATION

LOOKING OUTSIDE THE HAYSTACK

LOOKING OUTSIDE THE HAYSTACK

- CALCULATE THE MAHALANOBIS DISTANCE RANK OF EACH PROTEIN FOR EACH PAIR OF VARIABLES

LOOKING OUTSIDE THE HAYSTACK

> CALCULATE THE MAHALANOBIS DISTANCE RANK OF EACH PROTEIN FOR EACH PAIR OF VARIABLES
> CALCULATE THE AVERAGE RANK FOR EACH PROTEIN (AVERAGE OVER ALL PAIRS OF VARIABLES)

LOOKING OUTSIDE THE HAYSTACK

> CALCULATE THE MAHALANOBIS DISTANCE RANK OF EACH PROTEIN FOR EACH PAIR OF VARIABLES
> CALCULATE THE AVERAGE RANK FOR EACH PROTEIN (AVERAGE OVER ALL PAIRS OF VARIABLES)
> PRIORITIZE THE PROTEINS ACCORDING TO THEIR AVERAGE RANKS

RESULTS

PERFORMANCE	RESULT
TOP1	0.74
TOP2	0.79
TOP3	0.80
TOP4	0.83

$\mathcal{T H} \mathcal{A N K S}$
 $\mathcal{F O R}$
 $\mathcal{Y O U R} \mathcal{A T T E N T I O N}$

