Clustering Categorical Data by CD Vectors

Xiaogang(Steven) Wang

Dept. of Math. and Stat. York University

Joint work with Peng Zhang and Peter X. –K.Song, University of Waterloo

Presentation Outline

- n Review of current literature
- n Hamming Distance and CD vector
- n Modified Chi-square test
- Description of our Algorithm
- n Numerical Results
- n Conclusion and Discussions

Review of existing algorithms

K-modes

- This algorithm is built on the idea of K-means algorithm.
- 2. It demands the number of clusters.
- 3. Partition is sensitive to the input order.
- 4. Computational Complexity O(n)

AutoClass Algorithm

This algorithm can cluster both categorical and numeric data types.

- 1. It utilizes the EM algorithm.
- 2. It searches the optimal number of clusters
- 3. EM algorithm is known to have slow convergence.
- 4. The computational complexity is O(n).

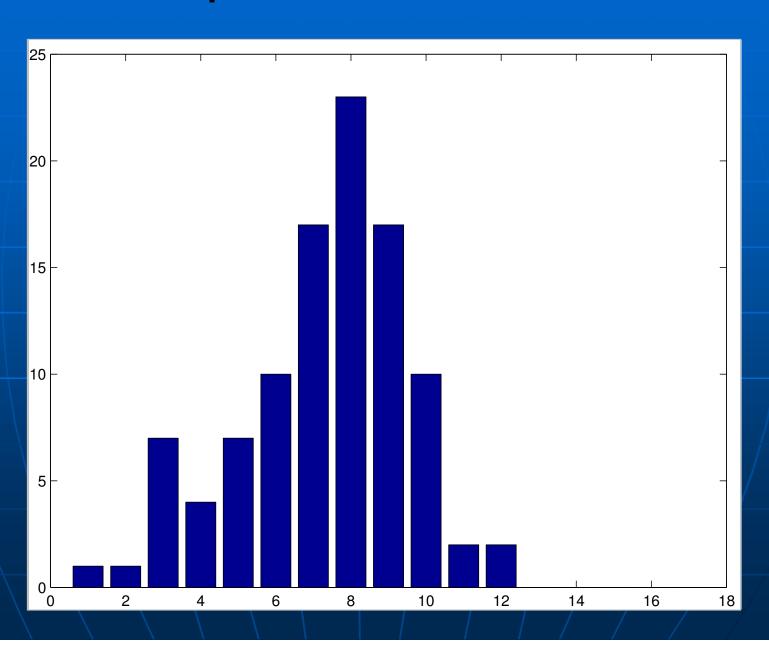
Categorical Sample Space

- Assume that the data set is stored in a n*p matrix, where n is the number of observations and p the number of categorical variables.
- The sample space consists of all possible combinations generated by *p* variables.
- The sample space is discrete and has no natural origin.

Hamming Distance and CD vector

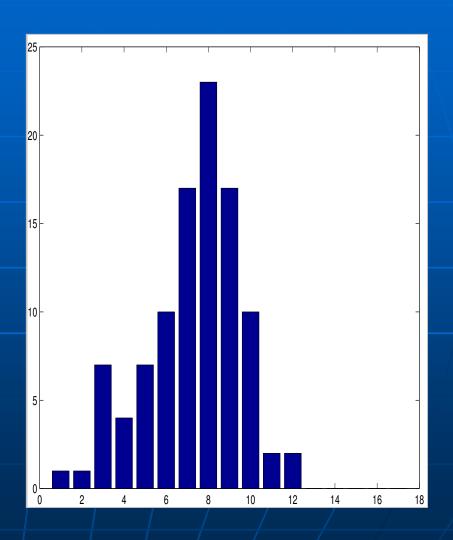
- Hamming distance measures the number of different attributes between two categorical variables.
- Hamming Distance has been used in clustering categorical data in algorithms similar to K-modes.
- We construct Categorical Distance (CD) vector to project the sample space into 1-dimesional space.

Example of a CD vector



More on CD vector

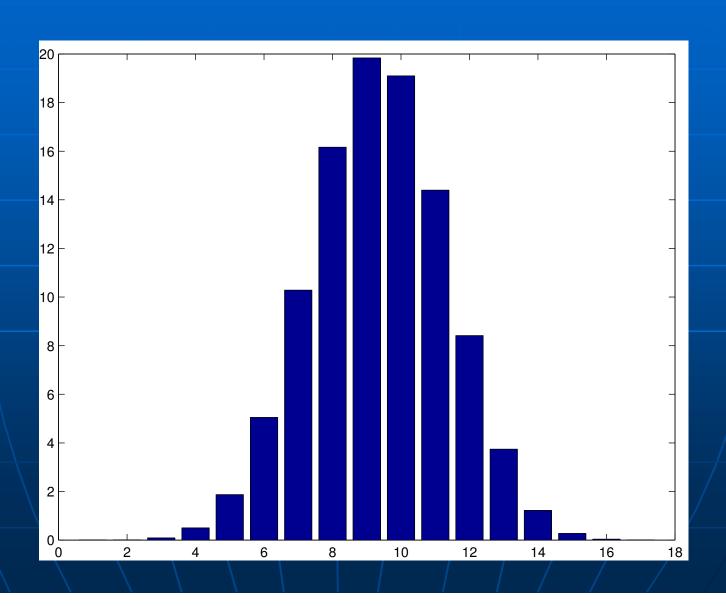
- The dense region of the CD vector is necessarily a cluster!
- The length of the CD vector is **p**.
- We can construct many CD vectors on one data set by choosing different "origin".



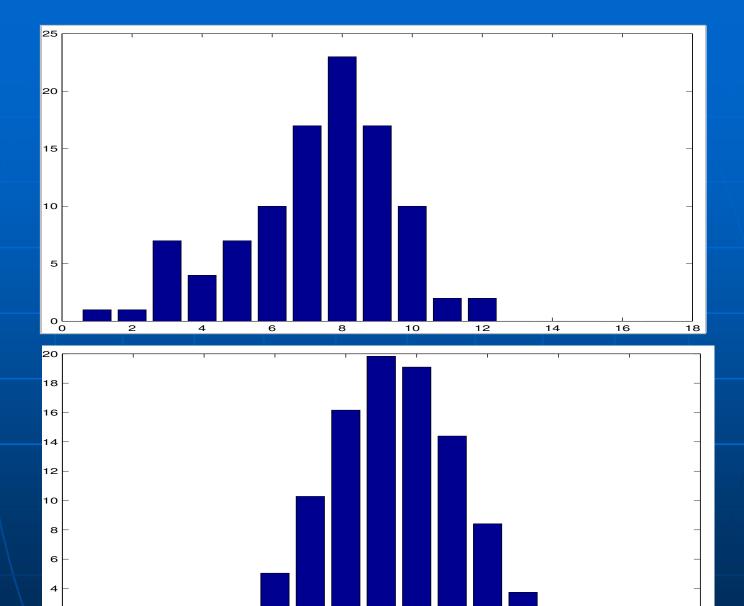
How to detect a cluster?

- The CD vector shows some clustering pattern.
 But are they statistically significant?
- n Statistical Hypothesis Testing:
 - Null Hypothesis: Uniformly distributed.
 - Alternative: Not uniformly distributed.
- We call the expected CD vector under the null Uniform CD vector (UCD).

UCD: Expected CD vector under Null.



CD Vector



10

12

14

16

18

UCD Vector

2

o L

2

How to compare these 2 vectors?

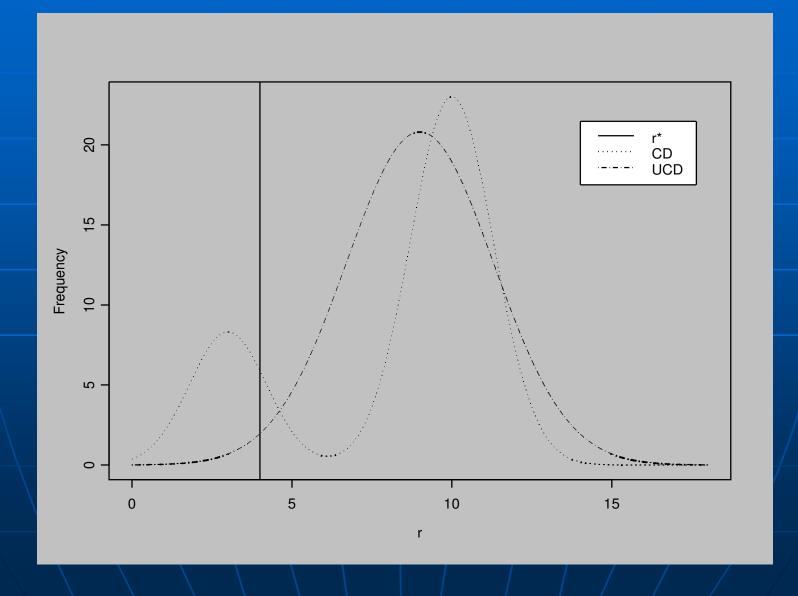
- n One is the observed CD vector.
- The other is the expected CD vector under null hypothesis.
- Chi-square is the most natural tool to test the null hypothesis based on these two vectors.
- However clustering patterns are all local features. Thus we are not interested in a comparison at a global level.

Modified Chi-square Test

The modified Chi-square is defined as:

$$\chi^{2}_{M} = \sum_{i=1}^{C} \frac{\left(U_{i} - E_{i}\right)^{2}}{E_{i}} + \frac{\left((n - \sum_{k=1}^{C} U_{i}) - (n - \sum_{k=1}^{C} E_{i})\right)^{2}}{E_{i}}$$

Choice of C and Radius of a Cluster



CD Algorithm

- n Find a cluster center;
- Construct the CD vector given the current center;
- n Perform modified Chi-square test;
- If we reject the null, then determine the radius of the current cluster;
- n Extract the cluster
- n Repeat until we do not reject the null.

Numerical Comparison with K-mode and AutoClass

	CD	AutoClass	K-mode	
No. of Clusters	8 4	4	[3] [4] [5]	
Classi. Rates	100%	100%	75% 84% 82%	
"Variations"	0%	0%	6% 15% 10%	
Inform. Gain	100%	100%	67% 84% 93%	
"Variations"	0%	0%	10% 15% 11%	

Soybean Data: n=47 and p=35. No of clusters=4.

Numerical Comparison with K-mode and AutoClass

	CD	AutoClass		K-mo	de
No. of Clusters	7	3	[6]	[7]	[8]
Classi. Rates	95%	73%	74%	72%	71%
"Variations"	0%	0%	6%	15%	10%
Inform. Gain	92%	60%	75%	79%	81%
"Variations"	0%	0%	7%	6%	6%
\ <u>.</u> \.\.\.\.					

Zoo Data: n=101 and p=16. No of clusters=7.

Run Times Comparison

	K-modes	CD	
<u>. /</u>		<u> </u>	
Soybean			
Average	0.0653	0.0496	
S.D	0.0029	0.0010	
Zoo Data			
Average	0.0139	0.0022	
S.D	0.0018	0.0001	

Note that AutoClass requires human intervention.

Computational Complexity

- The upper bound of the computational complexity of our algorithm is O(kpn)
- Note that the sample size shrinks if the CD algorithm detects a cluster
- It is less computational intensive than K-modes and AutoClass since both have complexity of O(akpn) where a>1.

Conclusion

- n Our algorithm requires no convergence criterion.
- It automatically estimate the number of clusters.

 It does not demand or search for the true
 number of clusters.
- The sample size is reduced after one detected cluster is extracted.
- The computational complexity of our algorithm is bounded by O(n).

Future Work

- Scale the algorithm to large data sets by using the idea of Bradley et al.
- Generalize the idea to mixed data types
- Improve the distance function to handle correlated data
- n Implement a parallel algorithm

Reference:

Zhang, P, Wang, X. and Song, P.
Clustering Categorical Data Based
on Distance Vectors. Revised for JASA.