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The Nearest Neighbor Decision Rule




The Nearest Neighbor Decision Rule - cont.

1951- conceived b¥. FixandJ. Hodges

1967- T. CoverandP. Hartgave asymptotic
performance bounds in terms of the
Bayes eror for “nice” distributions.

Po<P,(1-NN)<2P 1 —P ]

These bounds amoved forall distributions by:
1977- C. Stone
1981- L. Devroye

Thel-NNrule has a long history of avoidance Iin
practice based on geral incorrectassumptions:

1. All thetraining datamust be stad.

2. Distances between the unknoandall the
fraining datamust be computed to classiy
3. It is unsuitablefor implementation iparallel.



The k-Nearest Neighbor Decision Rule

k=5



The k-Nearest Neighbor Decision Rule - cont.

1981 - L. Devroye showed that for &ining data
{ X1, Xo,.... X1}, andall distributions

Po(k—NN) - P_

when:
1. n appoadesinfinity
2. K appmoadiesinfinity
3. k/n appioadeszein

Extended also to the case when theice ofk Is
dependenon the taining data
(Devroye, Gyorfy & Lugosi, 1996).

In practicen andk are finite and a number of
additional questions arize



The k-Nearest Neighbor Decision Rulein
Practice: Finite Sample Size

. How can the st@ge of thetraining setbe
reducedwithout dgrading performance?

. How should theaduced taining set be
selected toepresent the diérent classes?

. How Iargje shouldk be? How should be
chosen’.

. Shouldall k neighbos beweighted equall®
If not, how shouldveightsbe ¢tosen?

. Shouldall the measwments beveighted
equally? If not, how should theseeightsbe
chosen?

. How can the rule be madshust to
overlapping classeandnoise?

. How can the _neicf:ihberof a ng point be
computed diciently?

. What is thesmallesteuial networkthat can
Implement thé&-NNrule? (minimum number
of hodes, newns, TLUS)



The Condensed Nearest Neighbor Rule

P. Hart - 1968

Given thetraining set { X} ={X4, X5,...,X} and
two (initially empty) storage locations STORE
and GRABBAG.

1. Transfer a random element from{X} into
STORE.

2. For each remaining element in { X} : classify
It using the 1-NN rule with STORE and if
classified correctly put it in GRABBAG.
Otherwise put it in STORE.

3. For each element in GRABBAG: classify it
using the 1-NN rule with STORE and if
classified incorrectly transfer to STORE.

4. Repeat step 3 until no transfers are made
from GRABBAG to STORE.

5. Exitwith STORE asthe condensed subset
of { X}.

Properties.
a) STORE istraining-set consistent.
b) STORE can be computed in O(n°) time.




Condensing with Nearest-Unlike Neighbors

Belur Dasarathy - 1994

Given an element X; of the training set { X} =

{ X1, Xo,.... X1}, the element of { X} closest to X;
but belonging to a different classis called a
nearest unlike neighbor.

The nearest unlike subset of { X} consists of all
elements of { X} that are nearest unlike
nelghbors of at |east one element of { X} .

Dasarathy gives a complicated algorithm called
MCS and conjectures it gives a Minimal
Consistent Subset but counter-examples are
found.

Gordon Wilfong - 1991
Proves computing MCS is NP-Compl ete
for 3 or more classes.

In Machine Learning literature condensing is
called instance pruning.

Wilson and Martinez - 1997

nearest unlike neighbor is called nearest enemy
and 3 algorithms are given.



Combined Editing and Condensing

B. Dasarati, J. Sdnchez and Sownsend 2000
|n-depth experimental comparison of 26
algorithms which are combinatorial combinations
of different editing and condensing algorithms.
Results:

The best algorithm is obtained by performing:
First: proximity-graph editing (RNG or GG)

SecondMCS condensing



The Optimal Classifier for Gaussian Data

optimal decision boundary




The 1-NN Classifier for the Gaussian Data

the optimal decision boundary

L2




Editing the 1-NN Classifier for the Gaussian
Data

the optimal decision boundary




The Edited Nearest Neighbor Rule

DenisL. Wilson - 1972

Given thetraining set { X} ={ X4, X5,....X4}.

PREPROCESSING
I. for each i:

1. Find the k-nearest neighbors to X; among
{ X1, X5, Xi 1, Xig 10X} -

2. Classify X; to the class associated with the
largest number of points among the k-nearest
nelghbors, breaking ties randomly.

[1. edit {X} ={Xq, X5,....X;} by deleting all
the elements misclassified in the foregoing.

DECISION RULE

1. Classify a new pattern X using the 1-NN rule
with the edited subset of { X} .




Editing Nearest Neighbor Ruleswith
Proximity Graphs

J. S. Sanchez, Pla & E J. Ferri -1997

Given thetraining set { X} = {X 1, X5,...,X}.

PREPROCESSING
I. Compute the proximity graph of { X}.

II. for each i:

Classify X; to the class associated with the
largest number of points among the graph
neighbors, breaking ties randomly.

[II. edit { X} = {X 1, Xo,...,X} by deleting all
the points misclassified in the foregoing.

DECISION RULE

1. Classify a new pattern X using the 1-NN rule
with the edited subset of { X}.

Recognition acurac

Editing: relative neighborhood graph was best
Editing & Condensing: Gabriel graph was best
Data reduction: Smilar




Proximity Graph Neighbor Decison Rules

J. S. Sanchez, Pla & E J. Ferri -1997
L. Devroye, L. Gyorfy and G. Lugosi - 1996
Given thetraining set { X} = {X 1, X5,...,X}.

DECISION RULE

Classify an unknown pattern Z to the class
associated with the largest number of points
among the proximity graph neighborsof Z in
{ X}, breaking ties randomly.

This rule takes care of the selection of the size of
K (number of nelghbors) and how they are
distributed around Z in a natural and fully
automatic way.

They conclude that the Relative Neighbor
Decision Ruleis the best.

Devroye et al. have various theoretical results
for the Gabriel nearest neighbor rule.




The Rectangle-otf-InfluenceNeighbor Rule

M. Ichino and J. Sklangk- 1985
L. Devroye, L. Gyorfy and G. Lugosi - 1996
(layered neaest neighbor rule scale invariant)

DECISION RULE

Classify an unknown pattegéhto the class
associated with thiargestnumber of points
among theectangle-of-influencaeighbos
of Z in { X}, breaking ties andomly
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Devroye et alshowed that when theeare no ties
this rule isasymptotically Bayes optimal



The 1-NN rulewith Voronoi Condensing --
The decision-boundary consistent subset

G. Toussaint & R. Poulsen - 1979

1. Markapoint X; if all its oronoi neighbors
belong to the same class as that of X;.
Delete all marked points.

Use 1-NN rule on remaining set.

2.
3.




Theresulting Voronoi condensed decision-
boundary consistent subset

G. Toussaint & R. Poulsen- 1979




The Voronol condensed subset is not
necessar ily the minimum-size consistent

subset
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Computing Nearest-Neighbor Decision
Boundaries

D. Bremner, E. Demaine, J. Erickson, J. lacono,
S. Langerman, P. Morin and G. Toussaint - 2003

In 2D: O(n log k), where k is the number of
points that contribute to the boundary.




Proximity-graph condensed subsets

G. Toussaint, B. Bhattacharya & R. Poulsen - 1985




The Surrounding Neighbor hood of a Point

The Nearest Centroid Neighborhood
B. Chaudhuri, 1996

Given atraining set T of n data points:

1. The 1st centroid neighbor of anew point pis
the closest point in T.

2. For k=1,2,... the k-th centroid neighbor of p
IS the point g, in T such that the centroid Qy
of g4,ds,...,qx 1S closest to p.
a=
o q ¢

“~e b



The k nearest-centroid-neighbors are not
necessarily the k neighbors with nearest
centroid.

ey



Proximity-Graph-Neighbor Decision Rules

L. Devroye, L. Gyorfy and G. Lugosi - 1996
J. Sanchez,.Pla and FFerri - 1997

the graph
neighborhood
of p -~ __-

Pointsa,b,c and d aregraph neighbors of p.

Proximity-graph-neighbor decision rules:

Classify a new point p according to a majority
vote of its graph neighbors.




| dentifying Competence-Critical Instances

Henry Brighton and Chris Mellish - 2001

(1 Review definitions of critical instances.
(] Propose a new method.

(] Perform an in-depth comparison of some of the
best methods on 30 data sets.

] Conclusion: Methods work well for either
homogeneous or non-homogeneous class
structures, but NOT both.

[1 The best methods tuned to their class-structure
can reduce the data sets by 80% without
degradation in performance.



The Relative Neighbor hood Graph

G. Toussaint, 1980






Two very different Relative Neighborhood
Graphs




A Nearest NeighborPattern Classification
Perceptron via explicit Voronoi diagrams

Owen Murphy - 1990

1. Compute Voronoi diagram.

2. Use one McCulloch-Pitts neuron for each facet of
each Voronol cell infirst layer.

O(n?) neurons in O(N"* D2 time & O(N"Y2Y space




A Nearest NeighborPattern Classification
Perceptron via implicit Voronoi diagrams

Owen Murphy - 1990

1. For each X; Compute n-1 bisecting hyperplanes.

2. Use one McCulloch-Pitts neuron for each
bisecting hyperplanein first layer.

O(n?) neuronsin O(dn?) time and O(dn) space.




Expected Size of Neural Networ ksfor Nearest
Neighbor Perceptrons

O. Murphy, B. Brooksand T. Kite- 1995

1. Compute Voronoi diagram with fast expected time
algorithms.

2. Use one McCulloch-Pitts neuron for each facet of
each Voronoi cell in first layer.

O(n) expected neurons in O(n) expected time & O(n)
expected space for fixed d.

But:

1. Hidden constant islarge.

2. \brst case number of neuronsis still O(n?).

3. Worst case complexity of computing Voronoi
diagram is exponential in d.

Note: They also rediscover \oronoi condensing
proposed by Toussaint and Poulsen in 1979.



Discarding Redundant Hyperplanes of
Nearest Neighbor Perceptrons

C. Gentileand M. Aznaier - 2001

1. Discards redundant hyperplanes. Computes
\oronoi diagram.

2. Usestwo layersinstead of three, and fewer
McCulloch-Pitts neurons than Murphy et al..
(largely duplicates work of Murphy et al. and does
not reference them)

But:

1. W\brst case number of neuronsis still O(n).
2. Wbrst case complexity of computing Voronoi
diagram is exponential in d.



The One-Layer Two-Class Linear Neural
Networ k

1. Perceptron - Rosenblatt - 1962

2. McCulloch-Pitts neuron - 1943

3. Threshold Logic Unit (TLU) - Dertouzos - 1965
4. Linear discriminant function - Fisher - 1936

X1
X2
Output
Xd
d
If > WXxc+wy,1>0  output =1

k=1

elseoutput =0



Class 1

Class 2

Solving Systems of Linear I nequalitiesviathe
Relaxation M ethod

S. Agmon - Canadian J. of Mathematics - 1954
T. Motzkin and I. Schoenberg - 1954

Given: training data of n d-dimensional vectors
{X} ={X1, X5,...%i, Xis1,--:X 1} » the weights of
the perceptron can be determined by solving a
system of linear inegualities.

WiXg1 + WoXgo + o+ WXgg + Weeg >0

WiXg1 + WoXop + ... + WgXpg + Wesg >0

WiXig + WoXip + ... + WgXig + Wgs1 >0

WiXis11 T WoXipg 0+ oo F WeXinq g+ Weep S 0
o

W1Xn1 + WoXno + ... ¥ WXng + W1 < 0




Minimum-Distance Pattern Classification
Perceptron

Each classis represented by a prototype vector P;.

Classify an unknown X into class C; if:
d(X, P;) =d(X, P;) for all | #1, or if:

gi(X) = —d(X, P)) > =d(X, P)) = gj(X) for all j #i.
gi(X) = -(X-=P;)« (X-P;)
gi(X) = ~(X+X—=2P;+ X+ P« P.)

gi(X) = P+ X-(P;- P.)/2

d
G;(X)= 3 WX +Wq . q
k=1

where Wik = BPik and Wid+1 = -(Pi°Pi)/2.



