# Proximity Graph Methods for Data Mining

## **Godfried Toussaint**

Computational Geometry Laboratory *McGill University* 

# **The Nearest Neighbor Decision Rule**



# The Nearest Neighbor Decision Rule - cont.

1951 - conceived by E. Fix and J. Hodges

1967 - T. Cover and P. Hart gave asymptotic performance bounds in terms of the Bayes error for "nice" distributions.

$$P_e \le P_e (1 - NN) \le 2P_e (1 - P_e)$$

These bounds are proved for all distributions by:

1977 - C. Stone

1981 - L. Devroye

The 1-NN rule has a long history of avoidance in practice based on several incorrect assumptions:

- 1. All the training data must be stored.
- 2. Distances between the unknown X and all the training data must be computed to classify X.
- 3. It is unsuitable for implementation in parallel.

# The *k*-Nearest Neighbor Decision Rule



# The *k*-Nearest Neighbor Decision Rule - *cont*.

1981 - L. Devroye showed that for training data  $\{X_1, X_2,...,X_n\}$ , and all distributions

$$P_e(k-NN) \rightarrow P_e$$

#### when:

- 1. *n approaches infinity*
- 2. k approaches infinity
- 3. k/n approaches zero

Extended also to the case when the choice of k is dependent on the training data (Devroye, Gyorfy & Lugosi, 1996).

In practice n and k are finite and a number of additional questions arize.

# The *k*-Nearest Neighbor Decision Rule in Practice: Finite Sample Size

- 1. How can the storage of the training set be reduced without degrading performance?
- 2. How should the reduced training set be selected to represent the different classes?
- 3. How large should k be? How should k be chosen?
- 4. Should all k neighbors be weighted equally? If not, how should weights be chosen?
- 5. Should all the measurements be weighted equally? If not, how should these weights be chosen?
- 6. How can the rule be made robust to overlapping classes and noise?
- 7. How can the neighbors of a new point be computed efficiently?
- 8. What is the smallest neural network that can implement the 1-NN rule? (minimum number of nodes, neurons, TLU's)

# The Condensed Nearest Neighbor Rule

#### P. Hart - 1968

Given the training set  $\{X\} = \{X_1, X_2,...,X_n\}$  and two (initially empty) storage locations STORE and GRABBAG.

- 1. Transfer a random element from {X} into STORE.
- 2. For each remaining element in {X}: classify it using the 1-NN rule with STORE and if classified correctly put it in GRABBAG. Otherwise put it in STORE.
- 3. For each element in GRABBAG: classify it using the 1-NN rule with STORE and if classified incorrectly transfer to STORE.
- 4. Repeat step 3 until no transfers are made from GRABBAG to STORE.
- 5. Exit with STORE as the condensed subset of {X}.

### **Properties:**

- a) STORE is training-set consistent.
- b) STORE can be computed in  $O(n^3)$  time.

# **Condensing with Nearest-Unlike Neighbors**

# Belur Dasarathy - 1994

Given an element  $X_i$  of the training set  $\{X\}$  =  $\{X_1, X_2, ..., X_n\}$ , the element of  $\{X\}$  closest to  $X_i$  but belonging to a different class is called a nearest unlike neighbor.

The nearest unlike subset of  $\{X\}$  consists of all elements of  $\{X\}$  that are nearest unlike neighbors of at least one element of  $\{X\}$ .

Dasarathy gives a complicated algorithm called MCS and conjectures it gives a Minimal Consistent Subset but counter-examples are found.

Gordon Wilfong - 1991

Proves computing MCS is NP-Complete
for 3 or more classes.

In Machine Learning literature condensing is called instance pruning.
Wilson and Martinez - 1997
nearest unlike neighbor is called nearest enemy and 3 algorithms are given.

# **Combined Editing and Condensing**

B. Dasarathy, J. Sánchez and S. Townsend - 2000

In-depth experimental comparison of 26 algorithms which are combinatorial combinations of different editing and condensing algorithms.

#### **Results:**

The best algorithm is obtained by performing:

First: *proximity-graph editing* (RNG or GG)

Second: MCS condensing

# **The Optimal Classifier for Gaussian Data**



# The 1-NN Classifier for the Gaussian Data

# the optimal decision boundary



# **Editing** the *1-NN* Classifier for the Gaussian Data

# the optimal decision boundary



# The Edited Nearest Neighbor Rule

#### Denis L. Wilson - 1972

Given the training set  $\{X\} = \{X_1, X_2,...,X_n\}$ .

#### **PREPROCESSING**

#### I. for each i:

- 1. Find the k-nearest neighbors to  $X_i$  among  $\{X_1, X_2,...,X_{i-1}, X_{i+1},...,X_n\}$ .
- 2. Classify  $X_i$  to the class associated with the largest number of points among the k-nearest neighbors, breaking ties randomly.
- II. edit  $\{X\} = \{X_1, X_2,...,X_n\}$  by deleting all the elements misclassified in the foregoing.

#### **DECISION RULE**

1. Classify a new pattern X using the 1-NN rule with the edited subset of  $\{X\}$ .

# **Editing Nearest Neighbor Rules with Proximity Graphs**

J. S. Sánchez, F. Pla & F. J. Ferri - 1997

Given the training set  $\{X\} = \{X_1, X_2, ..., X_n\}$ .

#### **PREPROCESSING**

I. Compute the proximity graph of  $\{X\}$ .

#### II. for each i:

Classify  $X_i$  to the class associated with the largest number of points among the graph neighbors, breaking ties randomly.

III. edit  $\{X\} = \{X_1, X_2,...,X_n\}$  by deleting all the points misclassified in the foregoing.

#### **DECISION RULE**

1. Classify a new pattern X using the 1-NN rule with the edited subset of  $\{X\}$ .

# Recognition acuracy:

Editing: relative neighborhood graph was best Editing & Condensing: Gabriel graph was best

Data reduction: similar

# **Proximity Graph Neighbor Decision Rules**

J. S. Sánchez, F. Pla & F. J. Ferri - 1997 L. Devroye, L. Györfy and G. Lugosi - 1996 Given the training set  $\{X\} = \{X_1, X_2,...,X_n\}$ .

#### **DECISION RULE**

Classify an unknown pattern Z to the class associated with the largest number of points among the proximity graph neighbors of Z in {X}, breaking ties randomly.

This rule takes care of the selection of the size of k (number of neighbors) and how they are distributed around Z in a natural and fully automatic way.

They conclude that the Relative Neighbor Decision Rule is the best.

Devroye et al. have various theoretical results for the Gabriel nearest neighbor rule.

# The Rectangle-of-Influence Neighbor Rule

M. Ichino and J. Sklansky - 1985 L. Devroye, L. Györfy and G. Lugosi - 1996 (layered nearest neighbor rule - scale invariant)

#### **DECISION RULE**

Classify an unknown pattern Z to the class associated with the largest number of points among the rectangle-of-influence neighbors of Z in  $\{X\}$ , breaking ties randomly.



Devroye et al. showed that when there are no ties this rule is asymptotically Bayes optimal.

# The 1-NN rule with Voronoi Condensing -The decision-boundary consistent subset

#### G. Toussaint & R. Poulsen - 1979

- 1. Mark a point  $X_i$  if all its Voronoi neighbors belong to the same class as that of  $X_i$ .
- 2. Delete all marked points.
- 3. Use 1-NN rule on remaining set.



# The resulting Voronoi condensed decisionboundary consistent subset

# G. Toussaint & R. Poulsen- 1979



# The Voronoi condensed subset is not necessarily the minimum-size consistent subset

| • | • |
|---|---|
| • | • |
| • | • |
| • | • |
| • | • |
| • | • |
| • | • |
| • | • |
|   |   |

# Computing Nearest-Neighbor Decision Boundaries

D. Bremner, E. Demaine, J. Erickson, J. Iacono, S. Langerman, P. Morin and G. Toussaint - 2003

In 2D:  $O(n \log k)$ , where k is the number of points that contribute to the boundary.



# **Proximity-graph condensed subsets**

# G. Toussaint, B. Bhattacharya & R. Poulsen - 1985



# The Surrounding Neighborhood of a Point

The Nearest Centroid Neighborhood *B. Chaudhuri*, 1996

Given a training set T of n data points:

- 1. The *1st* centroid neighbor of a new point *p* is the closest point in *T*.
- 2. For k=1,2,... the k-th centroid neighbor of p is the point  $q_k$  in T such that the centroid  $Q_k$  of  $q_1,q_2,...,q_k$  is closest to p.



The *k nearest-centroid-neighbors* are not necessarily the *k neighbors with nearest centroid*.



# **Proximity-Graph-Neighbor Decision Rules**

L. Devroye, L. Györfy and G. Lugosi - 1996 J. Sanchez, F. Pla and F. Ferri - 1997



Points a,b,c and d are graph neighbors of p.

Proximity-graph-neighbor decision rules:

Classify a new point **p** according to a majority vote of its graph neighbors.

# **Identifying Competence-Critical Instances**

## Henry Brighton and Chris Mellish - 2001

- ✓ Review definitions of critical instances.
- ✓ Propose a new method.
- ✓ Perform an in-depth comparison of some of the best methods on 30 data sets.
- ✓ Conclusion: Methods work well for either homogeneous or non-homogeneous class structures, but NOT both.
- ✓ The best methods tuned to their class-structure can reduce the data sets by 80% without degradation in performance.

# The Relative Neighborhood Graph

G. Toussaint, 1980





# Two very different Relative Neighborhood Graphs





# A Nearest Neighbor Pattern Classification Perceptron via explicit Voronoi diagrams

# Owen Murphy - 1990

- 1. Compute Voronoi diagram.
- 2. Use one McCulloch-Pitts neuron for each facet of each Voronoi cell in first layer.

 $O(n^2)$  neurons in  $O(n^{\lceil (d+1)/2 \rceil})$  time &  $O(n^{\lceil d/2 \rceil})$  space.



# A Nearest Neighbor Pattern Classification Perceptron via implicit Voronoi diagrams

# Owen Murphy - 1990

- 1. For each  $X_i$  Compute n-1 bisecting hyperplanes.
- 2. Use one McCulloch-Pitts neuron for each bisecting hyperplane in first layer.

 $O(n^2)$  neurons in  $O(dn^2)$  time and O(dn) space.



# **Expected Size of Neural Networks for Nearest Neighbor Perceptrons**

# O. Murphy, B. Brooks and T. Kite - 1995

- 1. Compute Voronoi diagram with fast expected time algorithms.
- 2. Use one McCulloch-Pitts neuron for each facet of each Voronoi cell in first layer.

O(n) expected neurons in O(n) expected time & O(n) expected space for fixed d.

#### But:

- 1. Hidden constant is large.
- 2. Worst case number of neurons is still  $O(n^2)$ .
- 3. Worst case complexity of computing Voronoi diagram is exponential in d.

Note: They also rediscover Voronoi condensing proposed by Toussaint and Poulsen in 1979.

# Discarding Redundant Hyperplanes of Nearest Neighbor Perceptrons

#### C. Gentile and M. Aznaier - 2001

- 1. Discards redundant hyperplanes. Computes Voronoi diagram.
- 2. Uses two layers instead of three, and fewer McCulloch-Pitts neurons than Murphy et al.. (largely duplicates work of Murphy et al. and does not reference them)

#### But:

- 1. Worst case number of neurons is still  $O(n^2)$ .
- 2. Worst case complexity of computing Voronoi diagram is exponential in d.

# The One-Layer Two-Class Linear Neural Network

- 1. Perceptron Rosenblatt 1962
- 2. McCulloch-Pitts neuron 1943
- 3. Threshold Logic Unit (TLU) Dertouzos 1965
- 4. Linear discriminant function Fisher 1936



if 
$$\sum_{k=1}^{d} w_k x_k + w_{d+1} > 0 \qquad output = 1$$

 $else\ output = 0$ 

# Solving Systems of Linear Inequalities via the Relaxation Method

S. Agmon - *Canadian J. of Mathematics* - 1954 T. Motzkin and I. Schoenberg - 1954

Given: training data of n d-dimensional vectors  $\{X\} = \{X_1, X_2, ..., X_i, X_{i+1}, ..., X_n\}$ , the weights of the perceptron can be determined by solving a system of linear inequalities.

$$w_{1}x_{11} + w_{2}x_{12} + \dots + w_{d}x_{1d} + w_{d+1} > 0$$

$$w_{1}x_{21} + w_{2}x_{22} + \dots + w_{d}x_{2d} + w_{d+1} > 0$$

$$\bullet$$

$$\bullet$$

$$\bullet$$

$$\bullet$$

$$\bullet$$

$$w_{1}x_{i1} + w_{2}x_{i2} + \dots + w_{d}x_{id} + w_{d+1} > 0$$

$$w_{1}x_{i+1,1} + w_{2}x_{i+1,2} + \dots + w_{d}x_{i+1,d} + w_{d+1} \le 0$$

$$w_{1}x_{n1} + w_{2}x_{n2} + \dots + w_{d}x_{nd} + w_{d+1} \le 0$$

# Minimum-Distance Pattern Classification Perceptron

Each class is represented by a prototype vector  $P_i$ .

Classify an unknown X into class  $C_i$  if:  $d(X, P_i) \le d(X, P_j)$  for all  $j \ne i$ , or if:

 $g_i(X) \equiv -d(X, P_i) > -d(X, P_j) \equiv g_j(X)$  for all  $j \neq i$ .

$$g_i(X) = -(X - P_i) \cdot (X - P_i)$$

$$g_{i}(X) = -(X \cdot X - 2P_{i} \cdot X + P_{i} \cdot P_{i})$$

$$g_i(X) = P_i \cdot X - (P_i \cdot P_i)/2$$

$$g_{i}(X) = \sum_{k=1}^{d} w_{ik} x_{k} + w_{d+1}$$

where  $w_{ik} = p_{ik}$  and  $w_{i,d+1} = -(P_i \cdot P_i)/2$ .