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The Nearest Neighbor Decision Rule
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The Nearest Neighbor Decision Rule - cont.

1951- conceived byE. Fix andJ. Hodges

1967- T. CoverandP. Hartgave asymptotic
performance bounds in terms of the
Bayes error for “nice”  distributions.

These bounds are proved forall distributions by:

1977- C. Stone

1981 - L. Devroye

The1-NN rule has a long history of avoidance in
practice based on several incorrect assumptions:

1. All thetraining data must be stored.
2. Distances between the unknownX andall the
training data must be computed to classifyX.
3. It is unsuitable for implementation inparallel.
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The k-Nearest Neighbor Decision Rule

k = 5
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The k-Nearest Neighbor Decision Rule - cont.

1981 - L. Devroye showed that for training data
{X1, X2,...,Xn}, andall distributions

when:
1. n approachesinfinity
2. k approachesinfinity
3. k/n approacheszero

Extended also to the case when the choice ofk is
dependent on the training data
(Devroye, Gyorfy & Lugosi, 1996).

In practicen and k are finite and a number of
additional questions arize.
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1. How can the storage of thetraining set be
reduced without degrading performance?

2. How should the reduced training set be
selected to represent the different classes?

3. How large shouldk be? How shouldk be
chosen?

4. Shouldall k neighbors beweighted equally?
If not, how shouldweights be chosen?

5. Shouldall the measurements beweighted
equally? If not, how should theseweights be
chosen?

6. How can the rule be maderobust to
overlapping classes andnoise?

7. How can the neighbors of a new point be
computed efficiently?

8. What is thesmallestneural network that can
implement the1-NN rule? (minimum number
of nodes, neurons, TLU’s)

The k-Nearest Neighbor Decision Rule in
Practice: Finite Sample Size



Properties:
a) STORE is training-set consistent.
b) STORE can be computed in O(n3) time.

P. Hart - 1968

Given the training set {X} = {X1, X2,...,Xn} and
two (initially empty) storage locations STORE
and GRABBAG.

1. Transfer a random element from {X} into
STORE.

2. For each remaining element in {X}: classify
it using the 1-NN rule with STORE and if
classified correctly put it in GRABBAG.
Otherwise put it in STORE.

3. For each element in GRABBAG: classify it
using the 1-NN rule with STORE and if
classified incorrectly transfer to STORE.

4. Repeat step 3 until no transfers are made
from GRABBAG to STORE.

5. Exit with STORE as the condensed subset
of {X}.

The Condensed Nearest Neighbor Rule



Condensing with Nearest-Unlike Neighbors

Belur Dasarathy - 1994

Given an element Xi of the training set {X} =
{X1, X2,...,Xn}, the element of {X} closest to Xi
but belonging to a different class is called a
nearest unlike neighbor.

The nearest unlike subset of {X} consists of all
elements of {X} that are nearest unlike
neighbors of at least one element of {X}.

Dasarathy gives a complicated algorithm called
MCS and conjectures it gives a Minimal
Consistent Subset but counter-examples are
found.

Gordon Wilfong - 1991
Proves computing MCS is NP-Complete
for 3 or more classes.

In Machine Learning literature condensing is
called instance pruning.
Wilson and Martinez - 1997
nearest unlike neighbor is called nearest enemy
and 3 algorithms are given.



Combined Editing and Condensing

B. Dasarathy, J. Sánchez and S. Townsend -2000

In-depth experimental comparison of 26
algorithms which are combinatorial combinations
of different editing and condensing algorithms.

Results:

The best algorithm is obtained by performing:

First: proximity-graph editing (RNG or GG)

Second:MCS condensing



The Optimal  Classifier for Gaussian Data

optimal decision boundary



The 1-NN Classifier for the Gaussian Data

the optimal decision boundary



Editing the 1-NN Classifier for the Gaussian
Data

the optimal decision boundary



Denis L. Wilson - 1972

Given the training set {X} = {X1, X2,...,Xn}.

PREPROCESSING

I. for each i:
1. Find the k-nearest neighbors to Xi among

{X1, X2,...,Xi-1, Xi+1,...,Xn}.

2. Classify Xi to the class associated with the
largest number of points among the k-nearest
neighbors, breaking ties randomly.

II. edit {X} = {X1, X2,...,Xn} by deleting all
the elements misclassified in the foregoing.

DECISION RULE

1. Classify a new pattern X using the 1-NN rule
with the edited subset of {X}.

The Edited Nearest Neighbor Rule



J. S. Sánchez, F. Pla & F. J. Ferri -1997

Given the training set { X} = {X 1, X2,...,Xn} .

PREPROCESSING

I. Compute the proximity graph of { X} .

II. for each i:
Classify Xi to the class associated with the
largest number of points among the graph
neighbors, breaking ties randomly.

III. edit { X} = {X 1, X2,...,Xn} by deleting all
the points misclassified in the foregoing.

DECISION RULE

1. Classify a new pattern X using the 1-NN rule
with the edited subset of {X}.

Editing Nearest Neighbor Rules with
Proximity Graphs

Recognition acuracy:
Editing: relative neighborhood graph was best
Editing & Condensing: Gabriel graph was best
Data reduction: similar



Proximity Graph Neighbor Decision Rules

J. S. Sánchez, F. Pla & F. J. Ferri -1997
L. Devroye, L. Györfy and G. Lugosi - 1996
Given the training set { X} = {X 1, X2,...,Xn} .

DECISION RULE

Classify an unknown pattern Z to the class
associated with the largest number of points
among the proximity graph neighbors of Z in
{ X} , breaking ties randomly.

This rule takes care of the selection of the size of
k (number of neighbors) and how they are
distributed around Z in a natural and fully
automatic way.

They conclude that the Relative Neighbor
Decision Rule is the best.

Devroye et al. have various theoretical results
for the Gabriel nearest neighbor rule.



The Rectangle-of-Influence Neighbor Rule

Devroye et al. showed that when there are no ties
this rule isasymptotically Bayes optimal.

Z

Xi

M. Ichino and J. Sklansky - 1985
L. Devroye, L. Györfy and G. Lugosi - 1996
(layered nearest neighbor rule -scale invariant)

DECISION RULE

Classify an unknown patternZ to the class
associated with thelargest number of points
among therectangle-of-influence neighbors
of Z in { X} , breaking ties randomly.



The 1-NN rule with Voronoi Condensing --
The decision-boundary consistent subset

G. Toussaint & R. Poulsen - 1979

1. Mark a point Xi if all its Voronoi neighbors
belong to the same class as that of Xi.

2. Delete all marked points.
3. Use 1-NN rule on remaining set.



The resulting Voronoi condensed decision-
boundary consistent subset

G. Toussaint & R. Poulsen- 1979



The Voronoi condensed subset is not
necessarily the minimum-size consistent

subset



Computing Nearest-Neighbor Decision
Boundaries

D. Bremner, E. Demaine, J. Erickson, J. Iacono,
S. Langerman, P. Morin and G. Toussaint - 2003

In 2D: O(n log k), where k is the number of
points that contribute to the boundary.



Proximity-graph condensed subsets

G. Toussaint, B. Bhattacharya & R. Poulsen - 1985



The Surrounding Neighborhood of a Point

The Nearest Centroid Neighborhood
B. Chaudhuri, 1996

Given a training set T of n data points:

1. The 1st centroid neighbor of a new point p is
the closest point in T.

2. For k=1,2,... the k-th centroid neighbor of p
is the point qk in T such that the centroid Qk
of q1,q2,...,qk is closest to p.

p

a = q1

c = q2

b



The k nearest-centroid-neighbors are not
necessarily the k neighbors with nearest
centroid.

p

a = q1

b = q2

d c = q3



Proximity-Graph-Neighbor Decision Rules

L. Devroye, L. Györfy and G. Lugosi - 1996
J. Sanchez, F. Pla and F. Ferri - 1997

Pointsa,b,c and d aregraph neighbors of p.

Proximity-graph-neighbor decision rules:

Classify a new point p according to a majority
vote of its graph neighbors.

p

a

b

c

d

the graph
neighborhood
of p



Identifying Competence-Critical Instances

Henry Brighton and Chris Mellish - 2001

Review definitions of critical instances.

Propose a new method.

Perform an in-depth comparison of some of the
best methods on 30 data sets.

Conclusion: Methods work well for either
homogeneous or non-homogeneous class
structures, but NOT both.

The best methods tuned to their class-structure
can reduce the data sets by 80% without
degradation in performance.
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The Relative Neighborhood Graph

G. Toussaint, 1980





Two very different Relative Neighborhood
Graphs



A Nearest Neighbor Pattern Classification
Perceptron via explicit Voronoi diagrams

Owen Murphy - 1990

1. Compute Voronoi diagram.
2. Use one McCulloch-Pitts neuron for each facet of

each Voronoi cell in first layer.

O(n2) neurons in O(n(d+1)/2) time & O(nd/2) space.



A Nearest Neighbor Pattern Classification
Perceptron via implicit  Voronoi diagrams

Owen Murphy - 1990

1. For each Xi Compute n-1 bisecting hyperplanes.
2. Use one McCulloch-Pitts neuron for each

bisecting hyperplane in first layer.

O(n2) neurons in O(dn2) time and O(dn) space.

Xi



Expected Size of Neural Networks for Nearest
Neighbor Perceptrons

O. Murphy, B. Brooks and T. Kite - 1995

1. Compute Voronoi diagram with fast expected time
algorithms.

2. Use one McCulloch-Pitts neuron for each facet of
each Voronoi cell in first layer.

O(n) expected neurons in O(n) expected time & O(n)
expected space for fixed d.

But:
1. Hidden constant is large.
2. Worst case number of neurons is still O(n2).
3. Worst case complexity of computing Voronoi

diagram is exponential in d.

Note: They also rediscover Voronoi condensing
proposed by Toussaint and Poulsen in 1979.



Discarding Redundant Hyperplanes of
Nearest Neighbor Perceptrons

C. Gentile and M. Aznaier - 2001

1. Discards redundant hyperplanes. Computes
Voronoi diagram.

2. Uses two layers instead of three, and fewer
McCulloch-Pitts neurons than Murphy et al..
(largely duplicates work of Murphy et al. and does
not reference them)

But:

1. Worst case number of neurons is still O(n2).
2. Worst case complexity of computing Voronoi

diagram is exponential in d.



The One-Layer Two-Class Linear Neural
Network

1. Perceptron - Rosenblatt - 1962
2. McCulloch-Pitts neuron - 1943
3. Threshold Logic Unit (TLU) - Dertouzos - 1965
4. Linear discriminant function - Fisher - 1936
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Solving Systems of Linear Inequalities via the
Relaxation Method

S. Agmon - Canadian J. of Mathematics - 1954
T. Motzkin and I. Schoenberg - 1954

Given: training data of n d-dimensional vectors
{X} = {X1, X2,...,Xi, Xi+1,...,Xn}, the weights of
the perceptron can be determined by solving a
system of linear inequalities.

w1x11 + w2x12 + ... + wdx1d + wd+1 > 0

w1x21 + w2x22 + ... + wdx2d + wd+1 > 0
•
•
•

w1xi1 + w2xi2 + ... + wdxid + wd+1 > 0

w1xi+1,1 + w2xi+1,2 + ... + wdxi+1,d + wd+1 ≤ 0
•
•
•

w1xn1 + w2xn2 + ... + wdxnd + wd+1 ≤ 0
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Minimum-Distance Pattern Classification
Perceptron

Each class is represented by a prototype vector Pi.

Classify an unknown X into class Ci if:
d(X, Pi) ≤ d(X, Pj) for all j ≠ i, or if:

gi(X) ≡ −d(X, Pi) > −d(X, Pj) ≡ gj(X) for all j ≠ i.

where wik = pik and wi,d+1 = -(Pi•Pi)/2.

gi X( ) X Pi–( ) X Pi–( )•–=

gi X( ) X X• 2Pi X•– Pi Pi•+( )–=

gi X( ) Pi X• Pi Pi•( ) 2⁄–=

gi X( ) wikxk wd 1++
k 1=

d
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