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Outline
My talk:

• Introduction: Regularized optimization and the regularized path

• The Lasso and Least Angle Regression

• Relationship of l1 regularization and boosting

• Sparseness propert(ies) of l1 regularization

• Efficient l1 regularization through piecewise linear solution paths

Next talk (Ji Zhu):

Designing efficient algorithms for Support Vector Machines using

path-following methods
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Regularized optimization

β̂(λ) = arg min
β

∑

i

C(yi,xiβ) + λJ(β)

• C is a convex loss, describing “goodness of fit” of our model to

training data

– Regression: C(y, f) = C(y − f) function of residual

– Classification: C(y, f) = C(yf) function of margin

• J(β) is a model complexity penalty.

Typically J(β) = ‖β‖q
q i.e. penalize lq norm of model, q ≥ 1.

• λ ≥ 0 is a regularization parameter

– As λ → 0, we approach non-regularized model

– As λ → ∞, we get that β̂(λ) → 0
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Examples
• Regularized linear regression:

β̂(λ) = min
β

∑

i

(yi − xiβ)2 +
∑

j

‖βj‖
q
q

Squared error loss: C(y, f) = (y − f)2

– Ridge regression uses l2 penalty J(β) = ‖β‖2
2

– The Lasso (Tibshirani 96) uses l1 penalty J(β) = ‖β‖1

• Support Vector Machines:

Hinge loss: C(y, f) = (1 − yf)+

– Standard (2-norm) SVM uses l2 penalty ‖β‖2
2

– 1-norm SVM uses l1 penalty ‖β‖1
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The components of a regularized

optimization problem
Loss: describes “goodness of fit” to training data

• Classic statistical view: corresponds to likelihood

• Should also consider robustness and computation

Penalty: limits model search, prevents overfitting

• Bayesian interpretation: prior on model space

• Should also consider sparseness and computation

Regularization parameter balances loss and penalty
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The regularized solution path
Fixing the loss, penalty and data, and varying the regularization

parameter we get the “path of solutions”

{β̂(λ) , 0 ≤ λ < ∞}

This is a 1-dim curve through R
p.

• Interesting statistically, as the set of solutions to problems of

interest (Bayesian interpretation: changing prior variance)

• Often interesting computationally, as it has properties which

allow efficient “tracking” of this path
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Example: Lasso solution path in R
10

 Lasso
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(from Efron et al. (2004). Least Angle Regression. Annals of Statistics)
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Least Angle Regression
Efron et al (2004), Annals of Statistics

Consider the Lasso:

β̂(λ) = arg min
β

∑

i

(yi − xiβ)2 + λ
∑

j

|βj|

and its relation to two other regularization approaches:

• Stagewise regression: add variables one by one, fit residual (as

opposed to stepwise, where we re-do the fit)

• Least Angle Regression: new, geometrically motivated approach

with efficient algorithm
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Least Angle Regression: Main

Results
1. Efficient “path following” algorithm for lasso.

• Use geometry of the curve {β̂(λ) , 0 ≤ λ < ∞} to track it

2. Close relationship between stagewise regression and lasso

• By analogy, has implications for analysis of Boosting

We re-interpret these results and generalize them:

• To other regularized optimization problems

• To methods used in classification and machine learning
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l1 regularization: efficient and

effective
Highlights:

• Boosting as approximate l1 regularization

– Allows approximate l1 regularization in high (even infinite)

dimensional spaces

• The sparseness propert(ies) of l1 regularization

• The piecewise linearity property of l1 penalized solution paths

– Design new, efficient algorithms for popular methods

– Define new, robust regularized methods which we can solve

efficiently



l1 Regularization: Efficient and Effective. Fields Inst., 29 October 04 Saharon Rosset, Ji Zhu 11

Boosting as approximate l1

regularized path
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Boosting and l1 regularization
Hastie et al. (2001) argue and LARS makes more formal:
Boosting (AKA forward stage-wise) with squared error loss is
very similar to lasso

 Lasso
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Does this extend beyond sq. loss?
Yes, this is property of the l1 penalty, not the loss.

l1-penalized logistic regression example:
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Conclusion: Boosting and l1 reg.

“Boosting can be described as a coordinate-descent search,

approximately following the path of l1-constrained optimal

solutions to its loss criterion, and converging, in the

separable case, to a “margin maximizer” in the l1 sense.”

Rosset, Zhu & Hastie (2004). Boosting as a Regularized Path to a

Maximum Margin Classifier. Journal of Machine Learning Research
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Sparseness propert(ies) of l1

regularized path
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l1, l2 and l∞ penalties in R
2
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Sparseness of l1 penalty: n > p
Shape of l1 penalty implies sparseness. For large values of λ only few non-zero

coefficients.

 Lasso
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Sparseness: p > n
For any convex loss, assuming only “non-redundancy”:

Theorem (Rosset et al. 2004)

Any l1 regularized solution has at most n non-zero components

Corollary
The limiting interpolating (or margin maximizing) solution also has at
most n non-zero components
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Some implications of sparseness
• Variable selection (obviously)

• l1-regularized problems are “easier” than, say, l2-regularized

ones

– Can give good solutions in p >> n situations

See:

Friedman, Hastie, Rosset, Tibshirani, Zhu (2004). Discussion

of three boosting papers. Annals of Statistics

Ng (2004). Feature selection, l1 vs l2 regularization and

rotational invariance. ICML-04
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Piecewise linear regularized

solution paths
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The piecewise linear property
We want {β̂(λ) , 0 ≤ λ < ∞} to be piecewise linear in R

p as

function of λ.

For lasso established by Osborne et al. (2001) and LARS paper
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Our key questions:
• What is the fundamental property of (loss, penalty) pairs which

yields piecewise linearity?

• Are there efficient algorithms to generate these regularized

paths?

• Are there statistically interesting members in these families?

Rosset & Zhu (2004). Piecewise linear regularized solutions paths.
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What makes paths piecewise linear?
Some algebra gives us the following Lemma:

A sufficient condition for piecewise linearity is that:

• The loss C is piecewise quadratic

• The penalty J is piecewise linear

Practically, this condition is also necessary
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Building blocks for PWL regularized optimization

problems

Piecewise quadratic loss:

• Squared error loss: regression: (y − r)2, classification: (1 − yr)2

• Huber’s loss (robust):

C(y,xβ) =







(y − xβ)2 if |y − xβ| ≤ m

m2 + 2m(|y − xβ| − m) otherwise

• Piecewise linear loss: regression: |y − r| , classification: (1 − yr)+

Piecewise linear penalty:

• l1 penalty: J(β) =
∑

j |βj | (gives sparse solutions)

• l∞ penalty: J(β) = maxj |βj | (statistical motivation?)
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Some interesting examples of PWL

(with efficient algorithms)
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Robustifying the lasso
• n = 100, p = 80.

• All xij are i.i.d N(0, 1) and the true model is:

yi = 10 · xi1 + εi

εi
iid
∼ 0.9 · N(0, 1) + 0.1 · N(0, 100)

• Sparsity implies l1 penalty is appropriate

• Compare l1-regularized paths using Huber’s loss and squared

error loss
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The Huberized lasso (left) and the lasso (right)
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Classification: 1-norm and 2-norm Support Vector

Machines
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Zhu, Rosset, Hastie & Tibshirani. (2003) 1-norm SVM, NIPS-03

Hastie, Rosset, Tibshirani & Zhu. (2004) The entire regularization path of SVM.

Journal of Machine Learning Research.
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Multiple penalty problem: Protein Mass

Spectroscopy

(Tibshirani, Saunders, Rosset, Zhu & Knight, JRSSB, to appear)

• Predictors are “experssion levels” along a spectrum of masses for proteins.

• Want to constrain model while keeping coefficients “smooth”.

• Solution: l1 penalty on coefficients, l1 penalty on successive differences:

β̂(λ1, λ2) = arg min
β

∑

i

(yi − xiβ)2 + λ1‖β‖1 + λ2

∑

j

|βj − βj−1|

• Solution path is piecewise affine in (λ1, λ2)
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Summary
Implicit or explicit l1 regularization is prevalent in practical methods:

• Parametric regularization: lasso, 1-norm SVM

• Basis expansions: Wavelet thresholding, basis pursuit

• Implicit: boosting

Has favorable statistical and computational properties:

• Sparseness

• With appropriate loss, allows PWL solution paths

We use PWL property to:

• Design new, efficient algorithms for popular methods, like SVM

• Define new, robust regularized methods we can solve efficiently


