Fast Learning in Multi-Layer
Feed-Forward Neural Nets

with Small-World Architecture
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At the beginning:
Milgram’s Letter Experiment.

Result: Six Degrees of Separation.

S. Milgram, “The Small-World Problem™,
Psychology Today 1, 60-67 (1967).




Short Average Path Length: .=7
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=igure 5.9. The results of the social network search model compared with
Milgram’s Nebraska results. The bars represent the forty-two completed
chains that started in Nebraska, and the curve is the average over many

simulated searches preformed according to our model.




High Local Clustering Coetticient C




Clustering 1n social networks

Figure 1.3. Real social networks exhibit clustering, the tendency of two
individuals who share a mutual friend to be friends themselves. Here, Ego has

six friends, each of whom is friends with at least one other.




Small-
; _world
Fragmented networks
networks

Figure 3.4. Comparison between path length (L) and clustering coefficient

(C). The region between the curves, where L is small and C is large (shaded),

represents the presence of small-world networks.




What is a Small—Wol_d HN.etwork?

o
Random a Cip) ! C(0)

L{py ! L{OD)

Increasing randomness

Watts, D. J. and S. H. Strogatz. 1998. Collective dynamics of 'small-world' networks. Nature 393:440-42

A “Small-World” network is a network architecture between a
random network and a regular network. Starting from a regular
network and at random rewiring some links to a far node yields SWIN
(Small-World network can be obtained also by adding links instead of
rewiring old links )

There are other possible architectures, e.g. Scale-Free, Clustered,
Modular




Alternative architecture: Branching network

Figure 1.2. A pure branching network. Ego knows only 5 people,
but within two degrees of separation, ego can reach 25;

within three degrees, 105; and so on.




Possible architectures for network of internet (1964)
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Figure 11.1 Paul Baran’s Networks. I 1964, Paul Baran began thinking about
the optimal structure of the Interner. He suggested that there were three possible ar-
chitectures for such a network—-centralized, decentralized, and distributed—and
warned that both the centralized and decentralized structures that dominated com-
munications systems of the time were too vulnerable to artack. Instead, he proposed
that the Internet should be designed to have a distributed, mesh-like architecture.
(Reproduced with permission of Paul Baran.)



n Why is high local clustering beneficial?

Redundancy in case of breakdown of node

Small risk of error. Stability of system.

Why is short path length beneficial?
Rapid communication (Soctety: Milgram exp.,
WWW: tast search.

Brain: fast response, coherent activation in motor
COrtex.)




n Ideal network:

Fully connected — each node 1s linked

to each other node.

Then:

C=1(maximal), .=1(minimal)
Best possible network ?

Not possible in brain! Brain connections are

diluted.




Examples of small-world networks...

(1) Human society:
Milgram’s letter experiment.

Organization of board members ot big
corporations.

Films actors network.

Paul Erdos’ (mathematician) publication
network.




(2) Engineering:

Grid of electrical power lines in western US.

(3) Communication:
WWW,
Internet.
(4) Biology:
Metabolic network of bacterium E.coli,
Neural network of nematode worm C.

elegans.




Statistics of Small-World networks

N etwork Table II from:
Network | | - )
C. Elegans |: 2.65[ 7. 2. Scale-free brain functional networks
e e S sl Victor M. Eguiluz,Dante R. Chialvo,Guillermo
Cat Cort : . o : :
= Cecchi,Marwan Balikijand A. Vania Apkarian

Network Size Clustering coefficient Average path length Degree exponent
Internet, domain level [13] 321 0.24 3.56 2.1
Internet, router level [13] 228298 0.03 9.51 2.1

WWW [14] 153127 0.1 31 vn=2.1 your = 2.45
E-mail [15] 56969 0.03 495 1.81
Software [ 16] 1376 0.06 6.39 2.5
Electronic circuits [17] 329 0.34 307 2.5
Language [18] 460902 0.437 2.67 2.7
Movie actors [5, 7] 225226 0.79 3.65 2.3
Math. co-authorship [19] 70975 0.59 9.50 2.5
Food web [20, 21] 154 0.5 3.40 113

Metabolic system [22] 778 - 3.2 Yn = Yout = 2.2




Comparison of SWN model with

experiment:

‘TABLE 3.2 STATISTICS OF SMALL WORLD NETWORKS

- Lacrunt Leanoom Cacruat Cranpom

MOVIE ACTORS

3.65 2,99 0.79 0.00027

POWER GRID

18.7 12.4 0.080 0.005

C. ELEGANS

9 ¢k 5 4t . 838 . 008

L=Path Length; C=Clustering Coefficient.




Example of Social Network:

Film actors network. Kevin Bacon game:
K. Bacon: Bacon number = 0.

Movwie star having acted in a film together with
K.B.: Bacon number = 1.

Move star who has acted together with someone
who has acted with K.B.: Bacon number = 2.

Etc.




Statistics of Kevin Bacon Network:

TABLE 3.1 DISTRUBUTION OF ACTORS ACCORDING
TO BACON NUMBER

BACON NUMBER NUMBER OF ACTORS CUMULATIVE TOTAL
NUMBER OF ACTORS

1

1

1,550

1,551

121,661

123,217

310,465

433,577

71,516

504,733

5,314

510,047

652

510,699

90

510,789

510,827

510,828

510,829




Example of Netwotrk in Biology:

Food Web of Fish in Ocean
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Figure 1. A portion of the food web for the Benguela ecosysterm., which is
located off thhe westermn coast of South Africa. (Reprinted by permission of
Peter Yod=zis.)




Network of Interactions Between
Proteins in Yeast

TEx

Figure 17. A diagram showing the network of interactions between the vari-
ous proteins in the yeast Saccharomyces cerevisiae, more commonly known
as brewer’s or baker’s yeast. (Image courtesy of Hawoong Jeong, reprinted by

permission.)



Random vs. Scale-Free Networks

Bell Curve Power Law Distribution

Very many nodes
Most nodes have with only a few links

the same number of links

A few hubs with

No highl
o uELY large number of links

connected nodes

N

Number of nodes withk links

Number of nodes with k links

Figure 6.1 Randaom and Scale-F ree Networks. The degree distribution of a
random nctework follows a bell curve, telling ws that most nodes have the same
number of links, and nodes with a very large nwumber of links dorn’t exist (top lefz).
Theus a random nctework is similar to a national higheway netework, in which the
nodes are the cities, and the links are the major highways connecting them. Indeed,
most cities are served by rowughly the same nwumber of highways (béttom left). In
contrast, the power law degree distribution of a scale-free ‘rzctwork predicts that
most nodes have only a few links, held together by a fecw highly connected hubs (top
right). Visually this is very similar to the air traffic systerm, in which a large number
of small airports are connected 2o each other via a fecw major hubs (bottom right).




Example of Scale-Free Network:
Lotz

the mejor ISPs. Data collsctue 28 Jne 1999

fFi.gure 8. A map of the Internet. (Reprinted by permission of Bill Cheswick
and Lucent Technologies.)




Connectivity of Links in Internet:
Power Law Behavior

10,000

NUMBER
OF
ROUTERS

NUMBER OF NODES

Figure 9. The distribution of Internet “nodes” according to how many links
they possess. The curve follows a simple “power law” pattern. (Adapted from
M. Faloutsos, P. Faloutsos, and C. Faloutsos, On power-law relationships of the
Internet topology, Comput. Commmun. Rev. 29, 251 [1999].)




Statistics of Communication

Networks:

TABLE Il. Communication networks. Data on the World Wide
Web from http: ffwww.nd.edu/~networks contains N = 325729
documents and K = 108 108 links [12], while the Internet
database 15 taken from http://moat.nlanr.net and has N = 6474

nodes and K = 12572 links.

EL‘ lioh E b

WWW (.28 (.36
[nternet 0.29 0.26



Alternative Way to Characterize
Network Connectivity

Measuting netwotk connectivity. . .
Connectivity length D) localland 1D global
[Martchior & lLatora, Physica A285(2000)539.

1/ global D slobal IL
1 /15 local D! local 1/C

)

SW: C large + L small
15 local + 15, olobal both latge
D local = ID] global both small




Properties of Scale-Free Networks:

n Rapid propagation of computer viruses
n (no threshold).
n Stability against local errors.

n Vulnerable to attack in case of failure of hub.




Propagation of Infectious Deseases:

Figure 6.9. The
threshold infectiousness
required for an epidemic

to occur decreases
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High Vulnerability

Most efficient SW networks: SW with single center node. T. Niskawa et al., Phys. Rev. E
66 (2002) 046139. Problem: High vulnerability by failure of central node.

FIG. 1. Examples of shorteut configuration with (af a single FIG. 4. Normalized path length of the network as a function of

center and (b} two centers. the number m of shorteuts for §=1. The continuous curve is Eq.
' (). The circles and squares are the numerical computation of ! for
the configuration with a single center and of /, over 10 random
shortcut configurations, respectively. The nset shows the ratio /,/}
computed from numerical simulations (circles) and from theoretical
results (1) and (2) for N= (continuous line). N=10* was used for
numerical computations.




PART II. SWN in Neuroscience:
Experiments

n Cat cortex
n Macaque visual cortex.

n Human brain: Activity
network from magnetic
resonance imaging.

TABLE I Macaque and cat cortico-cortical connections [19].
The macaque database contains N = 69 cortical areas and K =
413 connections [20]. The cat database has N = 33 cortical
areas (including hippocampus, amygdala, entorhinal cortex, and
subiculum) and K = 564 (revised database and cortical parcel-
lation from [21]). The nervous system of C. elegans consists
of N = 282 neurons and K = 2462 links which can be either
synaptic connections or gap junctions [24].

E lob E b

Macaque 0.32
Cat 0.69

C. elegans 046




Dynamical Systems and Complexity

A cartoon representation of the
parameter space for various classes of
dynamical systems. The simplest ones
“live" in the left bottom cornet, Emergence
where analysis and formal proofs are
the techniques exp ectec_i, bqt many Low-Dimensional Self-Organized Complex
fundamental problems in biology A || Deterministic Chaos Crticalty (50€) ||| Systems
correspond to areas distant from that
land. Relatively simple dynamics gets CE 13 ‘ “ 'ﬁ l‘
sophisticated as the nonlinear term i A _uw

acquires relevance (moving upward in i X e '3’“ 5 1 -f‘ W

the graph) or as the number of
degrees of freedom increases (moving
to the right). Pictorial examples
include: (1)the transition from one to
many coupled pendulums, (2) few
foraging ants to the entire swarm

[5], (3) from the chaotic dynamics of
an isolated cardiac cell
\cite{chialvo90} to the
spatiotemporal spiral waves in the
heart [7], (4) a sand pile and, of
course, (5) the brain.

NonLinear

Non-linearity

Linear Stochastic Complicated
Processes (Gaussian) Systems

Linear

Proof

Few

Degrees of Freedom

Many



Scale-Free Brain Functional Netw.

V.M. Eguiluz et al., cond-mat/0309092
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FIG. 1: Methodology used to extract the networks from the sig-
nals. The correlation matrix is caleulated and then used to define
the network among the highest correlated nodes. Top four images
represent snapshots of activity and the three traces correspond to
selected voxels from visual (V1), motor (M1) and posterio-parietal
(PP) cortices.
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FI1G. 2: Example of a network extracted using the methods de-
scribed in Fig. 1. Top panel shows a pictorial representation of
the network (Nodes colored according to its degree: wellow = 1,
green = 2, red = 3, blue=4d, etc). The bottom panel shows the de-
gree distribution for three values of the correlation threshold., The
inset depicts the degree distribution for an equivalent randomly
connected network.



Brain Functional Networks ...
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FIG. 3: Average scaling taken from 22 networks extracted from
seven subjects. Top Panel: Average degree distribution. The
straight line illustrates a decay of E— 2. Bottom panel: Average
probability of finding a link between two nodes separated by a dis-
tance x < A (using r. = 0.6).
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Flz. 4: Top Panel: Plot of clustering vs. degree. Bottom panel:
Plot of a neighboring, node’s degree vs. degree illustrates the assor-
tative feature. Symbaols represents individual data and continucous
linea the average values for nodes with the same degree. (Same
subject shown in Fig. 2, with »-=0.6).



Neural Avalanches: Size Distribution
Follows Power Law

The size distribution of neuronal
avalanches in mature cortical
cultured networks follows a power
law with an exponent ~3/2
(dashed line). The data, re-plotted
from Figure 4 of [30] shows the
probability of observing an
avalanche covering a given
number of electrodes for three
sets of grid sizes shown in the
insets with n=15, 30 or 60
sensing electrodes (equally
spaced at 200 um). The statistics
is taken from data collected from
7 cultures in recordings lasting a
total of 70 hours and
accumulating 58000 (+- — s
55000)avalanches per hour 10"

(mean + SD) size (#electrodes)
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Statistics of Brain networks

. Elegans
Macaque VO
Clat Clortex

Statistics of relatively smaller networks. Because these
networks are not scale-free A is not indicated.




SWN in Neuroscience:
Computational Models

n Past response and coherence

n Efficient associative memory




SWN of Hodgkin-Huxley Neurons

Model: Hodgkin Huxley
neurons in 1-D periodic
network.

Result: Fast response and
coherent oscillations.

[.F.Lago-Fernandez et al.

Phys. Rev. Lett. 84
(2000) 2758.

Possible relevance in

neuroscience: Binding
problem
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FIG. 1. (a) Characteristic path length L{ gz} and clustering
coefficient € ( ) for the family of randomly rewired graphs.
normalized to the values L) and €01 of the I'E""ll|"ll case.
(b} Average activity oscillation amplitude e { 2], and () degree
of coherence Bi i) for the whole range of networks, calculated
between ¥y = 1} and T, = 2083, All curves are averages over
ten realizations of the simulation with parameters N = 797,
k=30, and ¢ = 0.015. An input signal Iy, = 1.5 was injected,
at ¢ = 50, to B0 conhiguous neurons { 10% of the total ).



Efficient Associative Memory Model
with SW Architecture

J.W. Bohland and A.A. Minai, Neurocomputing 38-40 (2001)
489.

Regular Network Random Network Small-World Network

h
-

Fig. 1. Network connection topologies. Nole thal these graphs are undirected, and that in the associative
memory networks, each edge is directed.




Efficient Associative Memory ...
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More recent modeling using SWN
and Scale-Free Networks:

n Self-Sustained Activity in a Small-World Network of

Excitable Neurons, A. Roxin et al. (Northwestern
Univ.), Phys. Rev. Lett. 92 (2004) 198101 [simple
network model of working memory].

Efficient Hopfield pattern recognition on a scale-free
neural network, D. Stauffer et al., cond-mat/0212601.

Epilepsy in Small-World Networks, T.I. Netotf et al., J.
of Neuroscience 37 (2004) 8075 [model explains short
and long bursts from region CA1 and CA3 of
hippocampus].




Part III. Fast Learning in Small-
World Networks

Multi-layered feed-forward network (visual cortex)




Design of the feed-forward NN

Regular Small-World Random

output input

y number of rewirin

The definition of « Regular », « Small-World » and « Random » are not the same as
usual

*Regular : Each neuron is connected to all neurons in the next layer

*Random: FEach neuron 1s connected randomly to a forward neuron, no backward
connection 1s allowed

*Small-World: Starting from the regular architecture, some connections to the next layer
are rewired to some forward layer




Connectivity: 5x5 NN

5x5 network, D local and global for an average of 1000 networks
24

3,3
22

20

18 D local
D global
16

14
12

10 100
Number of rewiring




Connectivity: 10x10 NN

Global and local connectivity in a 10x10 network during rewiring
4,6

Dlocal
Dglobal




Connectivity: 15x15 NN

D global and local in a 15x15 network during rewiring
o

* D local
D global

100 1000

Nombre de liens reconnectés




Definition of Learning Time:

Measures how often a pattern as be presented as
input to the network, in order that the error of
the output pattern becomes smaller than a given
error limit.




Learning time: 5x5 NN, 1 pattern

5x5 networks, 1 patterns, learning rate 0.01, error max 0.1
900 300 tests average
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Learning time: 5x5 NN, 2 patterns

5x5 networks, 2 patterns, learning rate 0.01, error max 0.1

300 tests average
80000

70000

60000

Ime

50000

Learning t

40000

30000

10 100
Number of rewiring




Learning time: 5x5 NN, 3 patterns

5x5 networks, 3 patterns, learning rate 0.01, error max 0.1
300 tests average
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Learning time: 10x10 NN, 3 patterns

10x10 network, 3 patterns, learning rate 0.01, error max 0.1
40000 500 tests average

36000
36000

34000

ime

32000
30000

Learning t

28000
26000
24000
800




oincidence of minima of D_loc,
D_glob and T_learn: SWN learns
fastest.

40000
» 38000 .
£36000
';)34{)00 - m  Learning Time
g 32000 D local
£ 30000 - D alobal
©28000 .- o
26000 "L act
24000

0 200 400 600 800 1000 1200 1400
Number of rewiring
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Dependence on number of patterns: Few

p atterns Simulation with 5 Neurons per

layer and 5 layers. Learning of 5
patterns.
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Increasing load of patterns

Simulation with : 5 Neurons per
layer with 5 layers. Learning 20
patterns.

Rewinng
W ' "
1 " : o * 10
0071, T 5 . - 2
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O T
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Increasing load of patterns beyond

Cap aCity Simulation with 5 neurons per

layer and 5 layers. Learning 80
patterns.

Learning 80
patterns. The
average error

is high. Here
the regular

absolute error

network 1s IR
optimal. I

-

| ! I ! | ! |
100000 200000 300000 400000
lterations




Network of 5 Layers by 8 Neurons

Simulation with 5 neurons per layers and 8
layers. NN was trained with 40 patterns for 50
different runs.

Rewiring
0
« 10
20
v+ 30
40
50

Learning 40 patterns. 60
The regular network " I
almost fails to learn.

But with a few short-
cuts the network learns

well. The best

architecture is not

absolute error

random but a Small-
World architecture.

T : : T
200000 300000 400000

lterations




Network of 15 Layers by 8 Neurons

This simulation was made with a

networks of 15 neurons per layers with 8
layers. It was trained with 100 patterns
Learning 100 for 20 different runs.

patterns. More

neurons and more 025+ - Rewiring
patterns than before _ —_— e m 0
(and the ratio * 10
patternS/MaX 0204 u 0,060 - gg
¥
patterns (?hanged) I _. 40
Observ ation: Small- % = 00564 _ ) = . + 80
Wortld architecture 5 015 ¥, - 2 L s % 60
performs better. % . e “ W o5 3 8 % F 4 & | ;g
Random and regular E ¥ . Y g v . 90
architectures are ® o104 ®I = s | 250000 | soo000 | O 100
o ° ® |0 L
worse in this case. :

' T T T T T | T T T 1
0 50000 100000 150000 200000 250000 300000
Iterations




This stimulation was made with a

networks of 15 neurons per layers with 8
layers. It was trained with 100 patterns
for 20 different runs.




Jptimal number ot short-cuts vs. no

of iterations

# of rewiring 5 pat 20 pat 40 pat
0 70000 85000 220000
10 45000 75000 220000
20 30000 75000 160000
30 30000 80000 215000
40 30000 85000 200000
50 25000 95000 335000
60 25000 100000 340000
40 25000 105000 480000
80 25000 115000 -
90 25000 130000 -

30000 135000 -

nb of patterns 40

min (learning
time) 160000

min( position ) ~20




Test of Generalization

5x3, Irate 0.02, generalisation test
200 patterns (5 class)
10 test average

AT Wﬁmﬁﬁﬁﬁm Rewi rng
gt v\ﬁv SN F AT AL PGS -

5 neurons by 5 layers
network. Task:
Classification into 5

—
]
fus
fam
o
Q
s}
S
o
2]
Q
©

classes.
Generalization error

is best for 0-20
rewirings (few short-

Plrarnra 4.4

| T | T | |
CUtS) c 50000 100000 150000 200000 250000 300000

lterations

*FFull symbols: Error of trained patterns.

*Empty symbols: Error of generalisation patterns (untrained patterns)



Generalization ...

5x8, Irate 0.02, generalisation test
200 patterns (5 class)

0,22 - - 10 test average
’ 1 DD |:|
0,20—_ l. Og . DDDDDDD DDDD Rewiring
0,18 - I...l DDDDDDDDDD - - D00y = 0
1 DDDDDDD e 40
0,16 S u aml . 80
1 .- -l.. . “sm am v 120
|
i e, s
B ] *
5 neurons by 8 layers E 0121 o I
1 o= fefepesrrtc o 40
IlCtWOI’k. Task: % 0 10—_ XO%. T @WW§%é%%%%%%ééi%@@w%ﬁ%%%%vww 80
1 1 1 3 0,08 WWXXW A R A A A AA S 7LD
Classification into 5 20 * RGP NNV IV 160
o |
] * 200
classes. 0064 ", LT
. . * **
Generalization error BHeS o Jahe S ettt IS L SN s g A ARFIRIART
. ] 'v r"v"" . . - W
is best for 40-80 0029 4, Yryvyv Aadd LU ETERE An 0 LIL T L ——
« . ] ‘F"VVvvvvvvvvvvvvvvvvvvvvvvvvv
| ! | ! | ! | ! | ! I 8 ]
CutS). Regular 0 50000 100000 150000 200000 250000 300000

architecture gives Iterations

much larger error.
*FFull symbols: Error of trained patterns.

*Empty symbols: Error of generalisation patterns (untrained patterns)



Summary

n With a small load of patterns (in comparison with the
capacity of the NN), the gain of speed and quality of

learning 1s small.

n With too many patterns, the NN needs a maximum of
capacity, and the regular architecture has the largest
capacity. In this range the average error 1s high.

n With a number of patterns between those extremes,
Small-World networks are the best with respect to
errors and speed of learning.




Implications in Neurobiology

Better understanding the basis of neural learning.

Insight into complexity in organization of brain vs.
functional tasks.

FFastest learning possible constraint on evolution of
nervous system of biological species?

Assumption of fastest learning: Model predicts
C and L of visual cortex (layered feed-forward):

C=0.125(8) and L = 3.7(5) [C.elegans: C=0.28,
[L=2.65]




Future Work

n Artificial Neural Networks, Data Mining: Do
our results carry over for learning in NN with
very many neurons and patterns?

n How about unsupervised learning (Hebbian
learning) on SWN and Scale-Free NN

architecturer

n Memory on SWN and Scale-Free NN

architecturer




