ol Dt M

David Banks

Institute of Statistics € Decision Sciences

Duke Pnifrersity

UNC ® NISS

L. Introduction}

Modern data mining requires one to make many hard searches.
These searches are needed for variable selection, model selection, and

robustness.

Different kinds of searches have different structures, and it is important
to exploit the properties of the problem in selecting the search strategy.

This talk focuses on scalability in search, as this relates to research
undertaken during the 2003-2004 program year at SAMSI. In particular,

we discuss:
variable selection,

model selection,

data subsetting.

o

2. Variable Selection]

The canonical search problem is variable selection in multiple linear
regression. Here one has p explanatory variables, and wants to find the
parsimonious subset of the variables which provides the best (or good)

explanation.

The usual approach is stepwise selection, but this is known to be
imperfect (cf. Banks, Olszewski, and Maxion, 2003).

However, work on the large p small n problem at SAMSI makes it clear
that aggressive variable selection is an essential part of any effort to
model data when p > 10.

o

2l oy ol

In variable selection, eadh of the p variables may be included or excluded
from the model. There are 2P possible models, corresponding to all
binary strings of length p. The combinatorial structure in this problem is

to examine all of the possible strings.

The strings can be identified with the vertices of the p-dimensional
unit hypercube. The (0,0, ...,0) string is the origing vertex, and
corresponds to a model that includes none of the explanatory variables.
The (1,1,...,1) model is the opposite vertex, and corresponds to the

model that includes all of the explanatory variables.

- J

4)

From this perspective, one can consider a search strategy that is based

upon a smart traversal of the unit hypercube.

The Gray code was patented in 1953. It is an algorithm for traversing the
unit hypercube that touches each vertex exactly once before returning to
the starting point. At each step, it changes only one of the digits in the

string from zero to one or from one to zero.

There are many such traversals, but the Gray code has the additional
property that, to the greatest extent possible, it makes only local moves.
In a sense, it takes only short steps.

- J

-

Using Gray codes, one search strategy is to take r steps along the cube
according to the algorithm, and then stop and fit a model. By repeating
this until one returns to the starting point, one draws a systematic but

well-dispersed sample of the model fits.
Here r should be about 1/1000th of 2.

If one analyzes the R? values (or some other measure of fit) from these

2P /r] models, one can find the variables that are most important.

As a technical note, there are reasons not to let » be a power of 2, but

this makes little difference in practice.

o

o

coO J O Ot B w N~ O

0000
0001
0010
0011
0100
0101
0110
0111
1000

corresponding vertex.

0000
0001
0011
0010
0110
0111
0101
0100
1100

10
11
12
13
14
15

1001
1010
1011
1100
1101
1110
1111

1101
1111
1110
1010
1011
1001
1000

Note that the rank in binary is not the same as the binary string for the

J

(. (Wilf, 1989). A

Let m = Y a;2° be the binary representation of m. Let ...bsbyb; be the

vertex string of rank m in the Gray code. Then

This means that one can quickly generate the vertex string at any given

point on the Gray code list.

(1974).

If the Hamming distance between vertex strings v, and vy is greater than
or equal to k, then the difference in their ranks in the Gray code list is at

least [%} .

This means that large steps in rank correspond to large changes in the

vertex string.

- J

4)

Gray code search is somewhat like the ‘Leaps and Bounds’ idea put

forward by Breiman in 1996, but is specialized to variable selection.

There are a number of modifications to Gray code search that can
improve performance when p is very large. For example, one can
do adaptive searches in which the step-size is a function of the R?

value—thus one takes large steps in bad neighborhoods.

Gray codes exist for other kinds of search problems with combinatorial
structures, such as trees or partitions. But there are not always analogues
of the ranking theorem or Yuen’s theorem to enable easy application or

guarantee good theoretical search properties.

- J

2:2 Random Restart]

A second way to search the hypercube is random restart. Here one picks
a vertex uniformly at random, and then looks at all neighboring vertices
to find the one that most improves R? (or whatever measure of fit is

being used).

The search moves to the best neighboring vertex, and repeats. The

search continues in this greedy hill-climbing way:.

When a local maximum is found, the analyst restarts the process and
finds another local maximum. By repeating this search many times
and keeping track of the distinct local maxima and the corresponding

fitness values, one can maek probability statements about the number of

unfound local optima and their fitness values.

o

10

22 Deviened Poperinent]

A third strategy is to treat the p explanatory variables as factors in a

2P=F factorial designed experiment. This approach was initially suggested

by Clyde (1999).

For a highly fractionated design, one calculates the R? values for each of
the design points, and then estimates the main effects and (maybe) the

low-order interactions among the p explanatory variables.

Variables with no significant effect are discarded. But this method does

not scale well with p.

- J

11

3. Unstructured Model Selection]

Variable selection could use algorithms that took smart advantage of
the special combinatorial structure or the relationship to experimental
design. But in general, many kinds of search do not have exploitable

structure.

Bertrand Clarke calls these situations . There are no natural

neighborhood relations among the elements on the list.

In the context of data mining, this kind of problem often arises in model

selection.

o

12

EREUEEIS

Racing is a strategy that was developed by Maron and Moore (1997). It
applies to many situations, but is especially useful in the context of list

searches.

Suppose one wants to find the model on a list that gives the best fit to
the data. It is helpfult to note that when comparing two models on the
list, it is not necessary to fit all of the data. Often it is sufficient to fit a

percent or two in order to determine which is better.

Racing fits a small percent of the data to each model, throws out the bad
models, and then fits another small portion of the data. Typically this
scales the seach up by a factor of about 100.

- J

13

EEETICINITRE

Sometimes it is possible to impose meaningful structure on lists. When
this can be done, then one has the hope of finding better search

strategies.

As an example, suppose one can find a for the
list. Perhaps two elements of the list are neighbors because they have
almost the same variables, or very similar basis elements, or similar

Interaction terms.

With a neighborhood structure, one can use simulated annealing. But
that is not necessarily a very good solution for problems in general, and

scalability is a real issue.

o

14

A second strategy for dealing with strucutured lists uses

This approach requires that the models in the list be decomposable
into simpler models in such a way that each model on the list can be
assembled from the simpler models. Then one uses traditional genetic

algorithm methods to let natural selection determine the best model on
the list.

In my experience, this is highly problematic. But there are people
who love genetic algorithms and seem able to make them work. I am
particularly surprised and impressed that people are able to find such

delicate constructions as D-optimal designs using these techniques.

Regarding scalability, I have no real information. But it is hard to

imagine that genetic algorithms would be very competitive.

o

15

3:4 List Search]

With list search, there is no exploitable structure that links the elements
of the list, and the list is usually so long that exhaustive search is

infeasible.

There is not much that one can do. If one tests entries on the list at

random, then one can try some of the following:

Eistimate the proportion of list entries that give results above some
threshold.

Use some modeling to estimate the maximum value on the list from

a random sample of list entries.

Eistimate the probability that further search will discover a new

maximum within a fixed amount of time.

16

-

A strategy invented by computer scientists (Maron and Moore, 1997,
Artificial Intelligence Review, 11 193-225) is to the testing.

One does pairwise comparisons of models. At first, one fits only a small

random fraction of the data (say a random 1%) to each model on the list.
Usually this is sufficent to discover which model is best and one discards
the other.

If that small fraction does not distinguish the models, then one fits
another small fraction. Only very rarely is it necessary to fit all mor
most of the data to select the better model.

Racing is an easy way to extend one’s search capability by about

100-told.

o

17

4_Robust Structure Fxtraction]

Suppose one has a large, complex dataset that contains multiple kinds of

structures and/or noise, e.g.:
40% of the data follow
30% of the data follow
30% of the data are noise.

What can one do to analyze cases like this? One should assume that the
data miner has little prior knowledge of the kinds of structure that might

be present.

- J

18

-

The standard approach in linear regression is to use S-estimators, which
look for the thinnest strip (think of a transparent ruler) which covers

some prespecified (but larger than 50%) fraction of the data.

This strategy breaks down in high dimensions, or when the structure

contains less than 50% of the data, or when fitting complex models.

One wants a solution strategy for harder problems:
linear and non-linear regression in high dimensions,
multidimensional scaling,

cluster analysis.

19

-

Ll dden prnctre o eereon]

The graph below shows data that come from a mixture of two regression
models. Any naive analysis will miss the point and find some kind of

average solution.

40
1

30
|
. %

10
2
8

o
o
08, ® ° ° % y=3"%+11
O y=23"+2 + error

~N

20

-

For observations {Y;, X;} for ¢ = 1,...,n assume that @) percent of these

follow the model
where

where (), 3, and ¢ are unknown. One can say Q% of the data as “good”
and the rest are “bad”.

Start small, with a subsample of only observations
= add only observations
= end with a large subsample of observations.

General procedure:
Choose d starting subsamples S;, each of size m

Grow the subsamples by adding consistent data

Select the largest subsample.

o

21

-

The algorithm for choosing the starting subsamples and growing them

efficiently is important in practice.

One starts with a guess about (), the fraction of good data. In general,

this is unknown, so one might pick a value that is reasonable given
domain knowledge about the data collection

scientific interest in a fraction of the data.

From the full dataset {Y;, X;} one selects, without replacement, d

subsamples S; of size m.

One needs to choose d and m to ensure that at least one of the starting
subsamples S; has a very high probability C' of consisting entirely of

good data (i.e., data that come from the model).

o

22

-

Preset a probability C' that determines the chance that the algorithm

will work.
The value m, which is the size of the starting-point random subsamples,

For multiple linear regression, m is p + 2 and a natural goodness-of-fit

measure is R2.

One solves the following equation for d:

C =IP[at least one of S,...,5;is all good | =1 — (1 — Q?")*.

)

Example: Q = .8, ¢ = .95 m=3 (p=1):

95=1—[1—(8)P* — d=

Ot

~

should be the smallest value that allows one to calculate a goodness-of-fit.

23

4)

Given the d starting-point subsamples S;, one grows each one of them by

adding observations that do not lower the goodness-of-fit statistic (R?).

Conceptually, for a particular S;, one could cycle through all of the
observations, and on each cycle augment S; by adding the observation
that provided the largest value of R?. This cycling would continue until

no observation can be added to S; without decreasing the R?.

One does this for all of the subsamples S;. At the end of the process,
each augmented S; would have size m; and goodness-of-fit R?. The
augmented subsample that achieves a large value of m; and a large value

of R? is the one that captures the most important structure in the data.

Then one can remove the data in S; and iterate to find the next-most

important structure in the dataset.

- J

24

4)

Fitting one observation per cycle is slow when n is large or one has a
complex model (e.g., MARS fits). So we use a two-step procedure to add
data.

Sequentially sweep through all observations not in .5;.

If the observation improves the fitness measure (or lowers it by only
a small amount 7), then

— add observation to S

— set m; = m; + 1.

If m; < kn then implement slow search.

Add the observation that improves the FM the most or decreases
F'M the least.

Repeat until m; = kn.

25

-

The analyst may pick an n that seems appropriately small, and a value
for k that seems appropriately large. These choices affect the runtime of

the algorithm.

The fast search is greedy, and the order of observations in the cycling
matters. The slow search is less greedy; order does not matter, but it
adds myopically. Fast search can add many observations per cycle, but

slow search always adds exactly one.

One is to increase the number of starting-point subsamples and combine

those that provide similar models and fits as they grow. The main

concern is not to enumerate all < > possible subsamples.

Qn/100

o

If speed is needed, then there are other ways to accelerate the algorithm.

~N

26

-

Note that:

One need not terminate the search at some preset value kn; one can
grow until the goodness-of-fit measure deteriorates. When one starts

to add bad data, there is a visible “slippery-slope” effect.

The goodness-of-fit measure should not depend upon the sample
size. For R? this is easy, since it is just the proportion of variation in
Y explained by X. For larger p, if one is doing stepwise regression
to select variables, then one wants to use an AIC or Mallows’ C),
statistic to adjust the tradeofl in fit between the number of variables

and the sample size.

Other measures of fit are appropriate for nonparametric regression,

such as cross-validated within-subsample squared error.

27

4)

To see how the slippery-slope occurs, and the value of monitoring fit as a
function of order of selection, consider the plot below. This plot is based
on using R? for fitness with the double-line data shown previously. The
total sample size is 80, and 70 observations were generated exactly on a

line, as indicated by the knee in the curve.

1.0

0.8

0.6

——————— knee in curve
—— sequential FM

RA2
0.4

0.2

0.0

0 20 60 80

40
Sample Size

28

-

4:2 Hidden Structure in MDS]

Multidimensional scaling (MDS) starts with a proximity matrix that
gives approximate distances between all pairs in a set of objects. These

distances are often close to a true metric.

MDS finds a low-dimensional plot of the objects such that the
inter-object distances are as close as possible to the values in the
proximity matrix. Thus it puts similar objects near each other. This
is done by a least squares fit to the values in the proximity matrix,

minimizing the stress function:

where z; is the location assigned to pseudo-object 7 in the

\low—dimensional space and d;; is the entry in proximity matrix.

29

4)

The classic example is to take the entries in the proximity matrix to be
the drive-time between pairs of cities. This is not a perfect metric, since
roads curve, but it is approximately correct. MDS finds a plot in which
the relative position of the cities looks like it would on a map (except the

map can be in any orientation; north and south are not relevant).

MDS seeks is extremely susceptible to bad data. For example, if one had
a flight tire while driving from Rockville to DC, this would create a
seemingly large distance. The MDS algorithm would distort the entire
map in an effort to put Rockville far from DC and still respect other

inter-city drive times.

A very small proportion of outliers, or objects that do not fit well in a
low-dimensional representation, can completely wreck the interpretability

of an MDS plot. In many applications, such as text retrieval, this is a

serious problem.

- J

30

Ll P

To test cherry-picking for MDS, consider the latitudes and longitudes
of 99 eastern U.S. cities. The Euclidean distances between these cities
gave the proximity matrix; the only stress in the MDS map is due to the

curvature of the earth.

Perturb the proximity matrix by inflating a random proportion 1 — () of

the entries:

31

Bad Data | Distortion (%) | Stress
150 1.028

2 500 2,304

150 1.791

10 500 28.196

150 3.345

30 500 9.351

32

-

To make things more interesting, we use not the traditional MDS using
the stress measure defined previously, but rather Kruskal-Shephard

non-metric scaling, in which one finds {z;} to minimize

where 0(-) is an arbitrary increasing function fit during the minimization.
The result is invariant to monotonic transformations of the data, which

is why it is nonparametric.
This minimization uses an alternating algorithm that first fixes 6(-) and
finds the {z;}, and then fixes the {z;} and uses isotonic regression to

find 6(-). This shows that the algorithm can be used in complex fits.

Our goal is to cherry-pick the largest subset of cities whose intercity

distances can be represented with little stress.

o

33

4)

In MDS, the size m of the initial subsamples is 4 (since three points are
always coplanar). We took C' = .99 as the prespecified chance of getting

at least one good subsample, and the table below shows the results.

True Distance Original | n® | n* | Final
1 —Q (%) | Distortion (%) | Stress Stress
150 1.028 | 80 | 80 | 4.78-12

2 500 2.394 | 80 | 80 | 4.84¢-12
150 1791 | 80 | 80 | 4.86e-12

10 500 28.196 | 80 | 80 | 4.81e-12
150 3.345 |80 | 77 | 4.86¢-12

30 500 0.351 |80 | 78| 4.78¢-12

Note: The stress of the undistorted dataset was 8.42 x 10712,

- J

34

4)

As before, one should inspect order-of-entry plots that display the stress
against the cities chosen for inclusion. The following two plots are
typical, and show the knee in the curve that occurs when one begins to
add bad cities.

0.5

0.4
0.8

0.3
0.6

0.2
0.4

0.2

Stress: 150% Distortion
0.1

Stress: 500% Distortion

0.0

0.0

0 60 80 0 0 60 80
Sample Size Sample Size

35

~

This is a simple strategy for identifing stucture in complex datasets.

It is practical in computer-intensive fits, but one needs greedy search

algorithms to select observations for inclusion.

The main computational problem is to scale the algorithm to
accommodate very large samples.

One can make probabilistic statements about the chance of having
a good starting-point subsample, and this almost leads to a

probabilistic guarantee on the result, but not quite.

Simulation indicates this works well across a range of problems and

situations.

Once structure is found, it can be removed and the process repeated

to find second-order structure.

J

36

