COXETER LECTURES - FIELDS INSTITUTE, TORONTO

The Mathematics of String Theory

Robbert Dijkgraaf University of Amsterdam
"The Unreasonable Effectiveness of Mathematics in the Natural Sciences."

The Book of Nature

"[The universe] cannot be

 read until we have learned the language and become familiar with the characters in which it is written. It is written in mathematicallanguage, and the letters are triangles, circles and other geometrical figures, without which means it is humanly impossible to comprehend a single word."

"To those who do not know mathematics it
 the beautyn the
 apprecianternature, it is frecessary to understand the language that she speaks in.

Quantum world

Black Box

Freeman Dyson

 (Gibbs Lecture, 1972)
"I am acutely aware of the fact that the marriage between mathematics and physics, which was so enormously fruitful in past centuries, has recently ended in divorce."

Standard Model

$L=F^{2}+\psi(i \not \subset+\varphi) \psi+|D \varphi|^{2}+\left(|\varphi|^{2}-1\right)^{2}$

$A B C$ of Quantum Physics

Classical Mechanics

B

calculus, differential geometry, dynamical systems,...

Quantum Mechanics

B

functional analysis, operator algebra, index theory, K-theory,...

Quantum Field Theory

knot theory, differential topology, 3- \& 4-manifold invariants

Quantum Gravity \& String Theory

symmetry, non-commutative geom., ...
"The Unreasonable Effectiveness of
Quantum Pbysics in Mathematics."

Quantum Theory

geometric object quantum invariant

knot K

$$
[\text { Geometry }] \bigcirc[\text { Algebra }]
$$

Mathematical knot

 ＂㘶＂ ＂发＂垠＂＂＂＂
 ＂8＂x°

Knot Invariant

$Z(K) \in \square$
knot K
algebra

2 dimensions

$3^{\text {rd }}$ dimension $=$ time

There is only one electron in the universe.

John, Wheeler
7
Richard Feynin

Vacuum

$$
18
$$

Quantum Amplitude

Algebraic Geometry

"The Quintic"

$$
x_{1}^{5}+x_{2}^{5}+x_{3}^{5}+x_{4}^{5}+x_{5}^{5}=0
$$

Calabi-Yau Threefold

"Counting Curves"

$$
\begin{aligned}
x_{1}(z) & =a_{1, d} z^{d}+a_{1, d-1} z^{d-1}+\ldots+a_{1,1} z^{1}+a_{1,0} \\
\cdots & =\cdots \cdots \cdots \\
x_{5}(z) & =a_{5, d} z^{d}+a_{5, d-1} z^{d-1}+\ldots+a_{5,1} z^{1}+a_{5,0}
\end{aligned}
$$

Polynomials of degree d

$$
N_{d}=\# \text { solutions }\left\{a_{i}\right\}
$$

$$
\begin{gathered}
d=1 \text { Lines } \\
N_{1}=2875
\end{gathered}
$$

$$
\begin{gathered}
d=2 \text { Conics } \\
N_{2}=609250
\end{gathered}
$$

$$
\begin{gathered}
d=3 \text { Cubics } \\
N_{3}=317206375
\end{gathered}
$$

$N_{1}=2875$
$N_{2}=609250$
$N_{3}=317206375$
$N_{4}=242467530000$
$N_{5}=229305888887625$
$N_{6}=248249742118022000$
$N_{7}=295091050570845659250$
$N_{8}=375632160937476603550000$
$N_{9}=503840510416985243645106250$
$N_{10}=704288164978454686113488249750$

String Theory

Riemann surface (complex curve)

Counting curves

Instanton Sum

$$
F(t)=\sum_{d \geq 0} N_{d} e^{-d t / \hbar}
$$

Calabi-Yau manifolds

Mirror Symmetry

Fiberwise Duality

String

Interactions

Frobenius algebra

integrable
systems

Commutative, Associative

Intersection Product

Quantum Cohomology

quantum loops

$$
\text { genus } g
$$

Gromov-Witten theory

strings

branes

$$
\lambda=0 \quad \lambda=\infty
$$

"Relative" string theory string

brane

open string diagrams

constant maps

$\sum \lambda^{2 g-2}$

$$
N_{g, d=0}=\int_{\bar{M}_{g}} \lambda_{g-1}^{3}=\frac{B_{2 g} B_{2 g-2}}{2 g(2 g-2)(2 g-2)!}
$$

Quantum crystals

$$
\square^{3} \rightarrow \square_{+}^{3}
$$

$$
\left(\left|z_{1}\right|^{2},\left|z_{2}\right|^{2},\left|z_{3}\right|^{2}\right)
$$

Ideal sheaves

$$
\begin{aligned}
& Z=\sum_{\text {crystals }} e^{-\lambda \#(\text { atoms })} \\
& =\prod_{n>0}\left(1-e^{-n \lambda}\right)^{-n} \square \exp \sum_{g} N_{g, 0} \lambda^{2 g-2}
\end{aligned}
$$

brane $=3$-dim partitions

quantum 3-fold, melting crystal

Simple N dependence

Planar diagrams

suppressed by $1 / \mathrm{N}^{2}$

2 loops 1 hole

Genus one

Interactions:
 Fishnet diagrams

Closed string worldsheet

Quantum Geometry?

Geometry is "Effective"

long distance

Gravity

Large N gauge theory

Wigner: Random Matrix

$\lim \int d \Phi e^{-N \operatorname{Tr} \Phi^{2}}$ $N \times N$

Gaussian Ensemble

Diagonalize $N \times N$ matrix $\Phi_{i j}$

$$
\Phi=U \cdot\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{N}
\end{array}\right) \cdot U^{-1}
$$

Spectrum of $\Phi_{i j}$

Spectral Density $N \rightarrow \infty$

$$
\rho(\lambda)
$$

Wigner's semi-circle law

Eigenvalue repulsion

Eigenvalue repulsion

Filling the "Dyson sea"

Density Profile

Random Matrix Model

$N \rightarrow \infty$
 $N \times N$

General Potential $W(\Phi)$

Eigenvalue Density $\rho(\lambda)$

Probe eigenvalue

Force $y(x)$
 complex plane

$$
y(x)=W^{\prime}(x)-2 \hbar \sum_{i} \frac{1}{x-\lambda_{i}}
$$

$N \rightarrow \infty$ Effective Geometry

$N \rightarrow \infty$ Effective Geometry

Smooth curve

Effective Geometry

Size \sim Degrees of Freedom

$\approx \hbar N$

Density Profile

Gaussian Model
 $W=\operatorname{Tr}\left(\Phi^{2}\right)$

$$
x^{2}+y^{2}=\hbar N
$$

Wigner's circle

General Case

Effective geometry

Calabi-Yau 3-manifold

Plato's Cave

 Mathem

Quantum Cave

Physical Dream

Mathematical Reality

