Towards generalized complex mirror symmetry

Alessandro Tomasiello

Mainly based on
hep-th/0406137
hep-th/0502148
with: M.Graña, M.Petrini, R.Minasian and work in progress:A. Kashani-Poor

Introduction

O An old idea: use forms rather than a metric
six dimensions: $\mathrm{SU}(3)$ structure

$$
\omega \text { real, } \quad \Omega \text { complex }
$$

spinor ϵ
without zeros
or

> such that

$$
\omega \wedge \Omega=0, \quad i \Omega \wedge \bar{\Omega}=\frac{1}{3!} \omega^{3}
$$

It determines a
metric $(\mathrm{O}(6)$ structure)

$$
\begin{gathered}
\mathrm{SU}(3)<\mathrm{O}(6) \\
\omega_{i \bar{j}}=i g_{i \bar{j}}
\end{gathered}
$$

To what extent can we rewrite string dynamics using forms?

Each half has a meaning:

(not CY yet)
\longleftrightarrow (imposes $d \omega=0$)

Complex
Mirror symmetry
Symplectic
[already Kontsevich, ICM ‘94]

Fluxes allow us to generalize Calabi-Yau

susy + only metric
\Rightarrow

$$
\delta_{\epsilon} \psi_{M}=\underbrace{\nabla_{M} \epsilon=0}_{\text {Calabi-Yau }}
$$

With fluxes:

NS \& RR	symplectic	complex
NS only	complex	

Finer classification: Types of allowed manifolds

Branes

Examples: conformally CY

D3
"Maldacena-Nuñez"
NS5

Mirror symmetry on branes is very well-understood (on Calabi-Yau)

Examples:

[Douglas, Kontsevich, Seidel-Thomas...]

Brane	B: holomorphic	$\mathrm{A}:$Special Lagrangian
F-term	$\operatorname{Im}\left(e^{i \theta} e^{i \omega}\right)=0$	$\operatorname{Im}\left(e^{i \theta} \Omega\right)=0$
Central charge:	$\int_{C Y} e^{i \omega} e^{b} \operatorname{ch}\left(F_{\text {brane }}\right) \sqrt{T d(C Y)}$	$\int_{\text {brane }} \Omega$

○ Can we use $e^{i \omega}$ and Ω also to characterize the
flux (non $C Y$) geometries?

generalized complex geometry

If a mirror symmetry still exists, how does it act on topology?

How are the topological rule and
O differential geometric mirror symmetry rules related? Is one encoded in the other?
truncation to light modes of Hitchin functionals?

tough mathematical questions, in general; will see some examples

Plan

- Classify $\mathcal{N}=1$ compactifications with $\operatorname{SU}(3)$ structures; generalized complex geometry
- Big picture: spontaneous susy breaking; what saves us from instantons
- Generalized mirror symmetry and topology; what replaces cohomology

Type II supergravity and $\mathrm{SU}(3)$ structure

We want to rewrite supergravity in terms of structures as much as possible

The $\operatorname{SU}(3)$ structure can be viewed as the internal spinor $\epsilon_{ \pm}$

Fastest way to see forms is in Clifford algebra:

$$
\begin{gathered}
\epsilon_{+} \otimes \epsilon_{+}^{\dagger}=e^{-i \omega} \\
\epsilon_{+} \otimes \epsilon_{-}^{\dagger}=\Omega
\end{gathered}
$$

For example $\Omega=\frac{1}{3!} \Omega_{m n p} \gamma^{m n p}$
Fortunately there is a formulation in which RR appears
as a single element of Clifford algebra: [Bergshoeff, Kallosh, Ortin, Roest, Van Proeyen]

$$
\delta \psi_{M}=\left(D_{M}+\frac{1}{8} \not H_{M} \mathcal{P}\right) \epsilon+\frac{1}{16} e^{\phi} \sum_{n} \frac{1}{2 n!} \ell^{(2 n)} \Gamma_{M} \mathcal{P}_{n} \epsilon
$$

We can rewrite susy transformations using combinations of these elements of Clifford algebra

$$
\operatorname{Tr}\left(G e^{i \omega}\right) \quad \operatorname{Tr}\left(G \Omega \gamma_{m}\right) \ldots
$$

$\Omega, e^{i \omega}$

With some manipulations... all solutions complex: $\quad d \Omega=0$ symplectic: $\quad d \omega=0$

NS \& RR	symplectic	complex
NS only	complex	

[Really: complex $\Longleftrightarrow(d \Omega)_{2,2}=0$]
geometry
Raymond-
Ramond

slight modification
for our purposes
of G-structure techniques
[Gauntlett,Martelli,
Pakis,Waldram],[...]

Compatible with mirror symmetry?

IIA

$$
(d+H \bullet)\left(f e^{i \omega}\right)=0 \quad(d+H \bullet)\left(f e^{i \omega}\right)=\operatorname{stuff}(G)
$$

$H \bullet \quad$ is $\quad H_{m n p}\left(d x^{m n} \iota^{p}-\frac{1}{3} \iota^{m n p}\right)$
3 contractions
I contraction

Maybe we should take more seriously

$$
e^{i \omega} \quad \text { and } \quad \Omega
$$

generalized complex geometry

Generalized complex geometry

Use direct sum of cotangent and tangent bundles

$$
T \oplus T^{*} \quad \text { rather than } T
$$

Structure: \quad Natural to consider $\operatorname{SU}(3,3)$ rather than $\operatorname{SU}(3)$
It turns out that $e^{i \omega}$ and Ω each defines indeed
$S U(3,3)$ structure
(more generally a pure spinor does that)
Together they define $\mathrm{SU}(3) \times \mathrm{SU}(3)$ structure on $T \oplus T^{*}$ think of this as the right definition of $\operatorname{SU}(3)$ structure

It makes it more reasonable to think that $\quad e^{i \omega} \leftrightarrow \Omega$
is a mirror symmetry

Differential conditions:

we can use Courant bracket rather than Lie Then:
"Nijenhuis(pure spinor) $=0$ " \longleftrightarrow pure spinor is closed
Courant $\quad[A, B]=d A B+A d B-A B d-B A d-(B \leftrightarrow A)$
A and B operators on forms
(examples: contractions i_{v}
wedges $\alpha \wedge$)
$\left\{\begin{array}{c}\text { forms that annihilate } \\ \text { a pure spinor }\end{array}\right\}$
closed under this bracket

A large class of brackets ("derived") can be obtained by
[Kosmann-Schwarzbach; Vinogradov]
in particular:
b two-form: $\quad A \rightarrow e^{b} A e^{-b}$

$$
B \rightarrow e^{b} B e^{-b}
$$

$$
d \rightarrow d+d b \wedge
$$

But we had $d+H$ mixed contractions and wedges
 It does not square to zero!
 Open puzzle...

For eleven dimensional sugra on $\mathrm{SU}(3)$ structure (=spin) 7-manifolds

$$
d \Phi+G \cdot \Phi+\Phi \cdot G=0
$$

$$
\Phi=\left\{e^{i \omega}, e^{i \omega} v, \Omega, \Omega v\right\}
$$

$$
e^{i \omega}(1+v), \Omega(1+v)
$$

together give $\mathrm{SU}(3) \times \mathrm{SU}(3)$ structure

SU(3) structure compactifications

preserved $\mathcal{N}=2$	preserved $\mathcal{N}=1$	spontaneously broken $\mathcal{N}=2$
SU(3) holonomy (Calabi-Yau)	"twisted generalized" CY	$\mathrm{SU}(3)$ structure

O We can consider also $\mathrm{SU}(3)$ structure manifolds with no particular differential property
O $e^{i \omega} \leftrightarrow \Omega$ is simply algebraic
Mirror symmetry can still make sense: same $\mathcal{N}=2$ action (not necessarily vacua)

Obviously this mirror symmetry is far from proven. We can use some features of $\mathcal{N}=2$ actions to test it

Calabi-Yau effective action (IIA):
$h^{1,1}$ vector multiplets
(classical) dynamics:
prepotentials

$$
\mathcal{F}_{0}\left(e^{i \omega}\right) \quad \mathcal{F}_{0}(\Omega)
$$

In presence of fluxes, hypermultiplet isometries get gauged
Example: H NS three-form $\quad \int_{\alpha_{a}} H=p_{a} \int_{\alpha_{a}} C_{3}=\xi_{a}$

In other words:
H is a moment map on the space of $\Omega \mathrm{s}$

$$
D \xi_{a}=d \xi_{a}+p_{a} A
$$

$$
\begin{aligned}
& \text { gauging of a } \quad \xi_{a} \rightarrow \xi_{a}+\epsilon p_{a} \\
& \text { "translation" }
\end{aligned}
$$

One can view similarly $d \omega$ as a moment map on the space of Ω
hyper-moment map

15
$\mathcal{N}=2$ prepotentials
For the flux, the gauging extracts the integral part: $\int_{\alpha_{a}} H$
What is the integral part of $d \omega$?
Proposal:
"Non simplecticity" also induces a gauging
[Hitchin; Grana, Louis,Waldram]
$d \omega=\sum_{a} e_{\text {related to }} \beta^{a}$
expand it in a basis of "massive harmonics" $\Delta \beta^{a}=m_{a} \beta^{a}$
gauging of ξ_{a}

Local computation with T^{3} fibrations
$(\nabla \omega+H)_{i j k} \leftrightarrow(\nabla \omega+H)_{i j \bar{k}}$

Are these gaugings only classical?

 gauged supergravity requires[work in progress with A. Kashani-Poor] that the directions to be gauged be isometries
But generically isometries of hypermultiplets moduli spaces are

Quantum effects would spoil previous slide However $\quad d F=H$ lifted by instantons If H wraps Γ there is a nonzero \Rightarrow unless tadpole for F on Γ
Why?

dependence on the ξ^{a}

Topology of gaugings and mirror symmetry

By constructing an explicit example, we will test the proposals of [GLMW] on gaugings

The basic phenomenon is standard:
e.g. for circle fibrations

Chern class of the fibration
a nontrivial fibration with no B-field goes into a trivial one with a B-field

We want actually to start from a Calabi-Yau with B-field
[Strominger-Yau-Zaslow]
Naively we would

fibre $\underset{\text { base }}{$| 1 | 0 | 0 | 1 |
| :---: | :---: | :---: | :---: |
| 3 | 0 | 0 | 3 |
| 3 | 0 | 0 | 3 |
| 1 | 0 | 0 | 1 |$|}$

So there must be singular fibres.

The quintic has

T-duality

10 such faces
which triangulate the base S^{3}
The cohomology becomes:

\mathbb{Z}	0	0	\mathbb{Z}
0	$H^{1}\left(B, R^{2} \pi_{*} \mathbb{Z}\right)$	$H^{2}\left(B, R^{2} \pi_{*} \mathbb{Z}\right)$	0
0	$H^{1}\left(B, R^{1} \pi_{*} \mathbb{Z}\right)$	$H^{2}\left(B, R^{1} \pi_{*} \mathbb{Z}\right)$	0
\mathbb{Z}	0	0	\mathbb{Z}

For a CY the nontriviality of the fibration is given by the monodromies around the singular loci
these groups are cycles corresponding egg. to paths:

When we add B-field by analogy with the case without monodromies
we expect some "Chern class"

3-cycle on CY
$H^{1}\left(B, R^{2} \pi_{*} \mathbb{Z}\right)$

2-cycle on mirror CY

H contracted on the fibres
is no longer in H^{2} (base)
(which vanishes)

We can still define a "twisted Chen class" in $H^{2}\left(B, R^{2} \pi_{*} \mathbb{Z}\right)$

This defines the topology of a (half-flat) mirror to $\mathrm{CY}+$ flux

cohomology:

\mathbb{Z}	0	0	\mathbb{Z}
0	H_{2}^{1}	H_{2}^{2}	0
0	H_{1}^{1}	H_{1}^{2}	0
\mathbb{Z}	0	0	${ }^{\wedge} \mathbb{Z}$

Notice:
\mathbb{Z}_{N}
What happens to the disappearing cycles?

Together with the remaining ones:

$$
\begin{array}{cc}
d \omega_{i}=E_{i} \alpha_{0}, & d \alpha_{A}=0 \\
d \beta^{A}=\delta^{A 0} E_{i} \widetilde{\omega}^{i}, & d \widetilde{\omega}^{i}=0
\end{array}
$$

(conjectured in [GLMW])
For more general cases (not mirrors to CY + flux)

$$
\Rightarrow E_{i} \rightarrow E_{i}^{a}
$$

[D'Auria, Ferrara, Trigiante,Vaula'] in the present case we see instead naturally rank one.

Conclusions

- Differential geometry of brackets useful for supersymmetry
- Mirror symmetry can still be defined using spontaneously broken supersymmetry
- Truncating the spectrum of $\mathrm{SU}(3)$ compactifications leads to interesting questions in topology vs. differential geometry

