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Introduction
An old idea: use forms rather than a metric

six dimensions:  SU(3) structure

It determines a SU(3) < O(6)

ωij̄ = igij̄

metric (O(6) structure)

To what extent can we rewrite 
string dynamics using forms?

spinor 

SU(3) structure:

ε without zeros ←→
J, Ω w. z. .such that

J ∧ Ω = 0 , iΩ ∧ Ω̄ = J3

3!

[Transition functions are valued in SU(3) (structure group):

gαβJαgt
αβ = Jβ and take Jα =

`0 −1
1 0

´
∀α, likewise for Ω. ]

Calabi–Yau would be: also dJ = dΩ = 0.

G–structure is a topological analogue of G–holonomy:

∃ of well–defined

tensors without zeros
vs.

∃ of covariantly constant

tensors

structure group on T is G vs. holonomy group is G

# It determines a metric g: O(6) > SU(3)

# It determines an almost complex structure because

SU(3) < U(3) we also denote it by J

# Existence of SU(3) structure on a manifold is equivalent to

vanishing of certain cohomology classes:

W3 = 0 (Stiefel–Whitney), c1 = 0 (Chern class of J .)

without zeros
or

complex

such that

ω real, Ω

ω ∧ Ω = 0 , iΩ ∧ Ω =
1

3!
ω3



Each half has a meaning:

Ω Jm

n

Gl(6,   ) structureC

ω symplectic

Sp(6,   ) structureC R

SU(3)Gl(6,   )C Sp(6,   )C R

(no differential 
property yet)

Mirror symmetry 

(imposes                 )

Each half has its dynamics:

B model 

dΩ = 0

A model

(imposes               )dω = 0

(not CY yet)

Complex Symplectic

[already Kontsevich, ICM ‘94]



With fluxes:
Results: [Graña, Minasian, Petrini, AT ’04]

•
AllN = 1 vacua are either

symplectic or complex:

IIA IIB

NS & RR symplectic complex

NS only complex

The NS solution seems to spoil the symmetry.

• But one can also show (drop /)

IIA IIB

(d + H•)(fe−iJ ) = 0 (d + H•)(fe−iJ) = {G6, (e
iJ + (1 + ∗))}

(d + H•)(f ′Ω) = {G6, (e
iJ + (1 + ∗))} (d + H•)(f ′Ω) = 0

H• isHmnp(dxmnιp − 1
3 ιmnp).

Comparing this with mathematics, it would seem that string theory requires a different twisting of the

Courant bracket→ different integrability condition

It could not be ∧ because (we anticipate a bit)

– there exists a NS type of solution; this has a worldsheet realization as a (2, 1) model

– with ∧ we would have gotten two integrable spinors→ (2,2) models

Fluxes allow us to generalize Calabi-Yau

only  metric onsusy +

Useful for KK reduction to 4d.

In 10d: supersymmetry transformation contain a parameter ε(10).

Fields:

• metric gMN , dilaton φ, several form fields BMN , CM1...Mk

Globally speaking, B and C are higher dimensional analogues of a

connection: they do not transform like forms, but their curvaturesH

andG are non–trivial in cohomology

• fermions λ, ψM

δεψM = ∇M ε + HMNP γNP ε+
terms with CM1...Mk

(later)

+ terms with λ (= 0 in this talk)

From supersymmetry transformations in 10d to those in 4d:

• reduce the infinitesimal parameter

IIA

ε(10)1 = η1
+ ⊗ ε+ + η1

− ⊗ ε−

ε
(10)
2 = η2

− ⊗ ε+ + η2
+ ⊗ ε−

IIB

ε(10)1 = η1
+ ⊗ ε+ + η1

− ⊗ ε−

ε
(10)
2 = η2

+ ⊗ ε+ + η2
− ⊗ ε−

• look for preserved vacua of the form Minkovski3,1 × M6

Examples:

– form fields set to zero:
δψM = ∇ε(10) = 0

= η ⊗∇ε(6)

⇒ dJ = 0 = dΩ: Calabi–Yau, SU(3) holonomy

– with form fields: J and Ω are still well–defined and give a

reduction to SU(3) structure; this is a sort of topological remnant

of the holonomy above

But: dJ $= 0 $=dΩ

= 0

Calabi-Yau

⇒

Finer classification: Types of
allowed manifolds Branes

Examples: conformally CY D3

“Maldacena-Nunez” NS5~



Mirror symmetry on branes is very well-understood
(on Calabi-Yau)

[Douglas, Kontsevich, 
Seidel-Thomas...]

∫
brane

Ω

Special
LagrangianA:

Examples:

Brane B: holomorphic  

F-term

Central
 charge:

∫
CY

e
iω

e
b
ch(Fbrane)

√
Td(CY )

Im(eiθ
e
iω) = 0 Im(eiθΩ) = 0



Can we use e
iω and Ω

also to characterize the 
flux (non CY) geometries?

generalized complex geometry

If a mirror symmetry still exists, 
how does it act on topology?

tough mathematical questions, in general;
will see some examples

How are the topological rule and 
differential geometric mirror symmetry rules related?

Is one encoded in the other?
truncation to light modes of Hitchin functionals?



• Classify            compactifications with SU(3) 
structures; generalized complex geometry

•  Big picture: spontaneous susy breaking; 
what  saves us from instantons

• Generalized mirror symmetry and 
topology; what replaces cohomology

N = 1

Plan



Type II supergravity and SU(3) structure

• Supersymmetry transformations for IIA/IIB come in terms of RR bispinor

δψM =
`
DM + 1

8 !HMP
´
ε + 1

16eφ P
n

1
2n! !G

(2n) ΓMPnε

δλ =
`
!∂φ + 1

12 !HP
´
ε + 1

8eφ P
n(−1)2n 5−2n

2n! !G(2n) Pnε

IIA IIB

P γ11 −σ3

Pn γn
11

σ1
forn + 1/2 even

iσ2
forn + 1/2 odd

The spinor decomposition requires an Ansatz to have anN = 1 solution: αη1
+ = βη2

+ ≡ η+.

• In six dimensional terms, using SU(3) structure identities we can assemble RR contributions

also as (Rm + iR̃mγ + iRmnγn)ε

The R can be expressed in terms of O(6, 6) objects only:

Rm = (G/6 · Φ/1)(0)

R̃m = (G/6 · Φ/2)(0)
Rmn = (G/6 · Φ/1)(2)mn + (G/6 · Φ/1)(0)gmn + (G/6 · (Φ/1)m)(1)n

G6 is a certain six–dimensional bispinor; Φ1, Φ2 are e−iJ and Ω (depending on IIA/IIB)

• Finally we can do the same for∇η+, which in turn can be related to theWi.

• Many general conclusions can then be drawn already from group theory

The SU(3) structure can be viewed as the internal spinor ε±

Fastest way to see forms
is in Clifford algebra: ε+ ⊗ ε

†
+ = e

−iω

ε+ ⊗ ε
†
− = Ω

Ω =
1

3!
Ωmnpγ

mnpFor example

Fortunately there is a formulation in which RR appears 
as a single element of Clifford algebra: [Bergshoeff, Kallosh, Ortin, 

Roest, Van Proeyen]

We want to rewrite supergravity in terms 
of structures as much as possible

[Grana,Petrini,
Minasian,AT]

~



We can rewrite susy transformations 
using combinations of these 
elements of Clifford algebra  

G
Ramond-
Ramond

Ω , e
iω geometry

Tr(Ge
iω) Tr(GΩγm) . . .

Results: [Graña, Minasian, Petrini, AT ’04]

•
AllN = 1 vacua are either

symplectic or complex:

IIA IIB

NS & RR symplectic complex

NS only complex

The NS solution seems to spoil the symmetry.

• But one can also show (drop /)

IIA IIB

(d + H•)(fe−iJ ) = 0 (d + H•)(fe−iJ) = {G6, (e
iJ + (1 + ∗))}

(d + H•)(f ′Ω) = {G6, (e
iJ + (1 + ∗))} (d + H•)(f ′Ω) = 0

H• isHmnp(dxmnιp − 1
3 ιmnp).

Comparing this with mathematics, it would seem that string theory requires a different twisting of the

Courant bracket→ different integrability condition

It could not be ∧ because (we anticipate a bit)

– there exists a NS type of solution; this has a worldsheet realization as a (2, 1) model

– with ∧ we would have gotten two integrable spinors→ (2,2) models

With some manipulations... all solutions

complex:

symplectic:

dΩ = 0

dω = 0

Compatible with mirror symmetry?

slight modification 
for our purposes 

of G-structure techniques
[Gauntlett,Martelli,
Pakis, Waldram],[...]

Really:    complex (dΩ)2,2 = 0[ ]



(d + H•)(feiω) = 0

IIA

(d + H•)(f ′Ω) = stuff(G) (d + H•)(f ′Ω) = 0

(d + H•)(feiω) = stuff(G)

IIB

Results: [Graña, Minasian, Petrini, AT ’04]

•
AllN = 1 vacua are either

symplectic or complex:

IIA IIB

NS & RR symplectic complex

NS only complex

The NS solution seems to spoil the symmetry.

• But one can also show (drop /)

IIA IIB

(d + H•)(fe−iJ ) = 0 (d + H•)(fe−iJ) = {G6, (e
iJ + (1 + ∗))}

(d + H•)(f ′Ω) = {G6, (e
iJ + (1 + ∗))} (d + H•)(f ′Ω) = 0

H• isHmnp(dxmnιp − 1
3 ιmnp).

Comparing this with mathematics, it would seem that string theory requires a different twisting of the

Courant bracket→ different integrability condition

It could not be ∧ because (we anticipate a bit)

– there exists a NS type of solution; this has a worldsheet realization as a (2, 1) model

– with ∧ we would have gotten two integrable spinors→ (2,2) models

Results: [Graña, Minasian, Petrini, AT ’04]

•
AllN = 1 vacua are either

symplectic or complex:

IIA IIB

NS & RR symplectic complex

NS only complex

The NS solution seems to spoil the symmetry.

• But one can also show (drop /)

IIA IIB

(d + H•)(fe−iJ ) = 0 (d + H•)(fe−iJ) = {G6, (e
iJ + (1 + ∗))}

(d + H•)(f ′Ω) = {G6, (e
iJ + (1 + ∗))} (d + H•)(f ′Ω) = 0

H• isHmnp(dxmnιp − 1
3 ιmnp).

Comparing this with mathematics, it would seem that string theory requires a different twisting of the

Courant bracket→ different integrability condition

It could not be ∧ because (we anticipate a bit)

– there exists a NS type of solution; this has a worldsheet realization as a (2, 1) model

– with ∧ we would have gotten two integrable spinors→ (2,2) models

is

3 contractions2 wedges,
1 contraction

Maybe we should take more seriously 

e
iω Ωand

generalized complex geometry [Hitchin, 
Gualtieri]



Generalized complex geometry

Structure:  Natural to consider SU(3,3) rather than SU(3)

Use direct sum of cotangent and tangent bundles

T ⊕ T
∗ rather than T

It turns out that e
iω Ωand each defines indeed

SU(3,3) structure

(more generally a pure spinor does that)

Together they define SU(3)xSU(3) structure on
think of this as the right definition of SU(3) structure

T ⊕ T
∗

It makes it more reasonable to think that e
iω

↔ Ω

is a mirror symmetry



Courant [A,B] = dAB + AdB − ABd − BAd − (B ↔ A)

A Band
operators on forms

(examples: contractions iv
α∧wedges )

!→ operator on forms

{ forms that annihilate
 a pure spinor }

closed under this bracket

Differential conditions:
we can use Courant bracket rather than Lie

“Nijenhuis(pure spinor)=0” pure spinor is closed

Then:

A large class of brackets (”derived”)
can be obtained by 

d→
other differential

(it squares to zero) 

[Kosmann-Schwarzbach; 
Vinogradov]



in particular: 

b two-form:

But

A → e
b
Ae

−b

B → e
b
Be

−b
d → d + db∧

we had d + H•

mixed contractions and wedges

It does not
square to zero!
Open puzzle...

For eleven dimensional sugra
on SU(3) structure (=spin) 

7-manifolds
dΦ + G·Φ + Φ·G = 0

Φ = {eiω
, e

iω
v,Ω, Ωv}

together give SU(3)xSU(3)structure

e
iω(1 + v), Ω(1 + v)

worldsheet approach:
[Lindstrom,Minasian,

AT, Zabzine] 



SU(3) structure compactifications

preserved preserved     

SU(3) holonomy
(Calabi-Yau)

“twisted 
generalized” CY SU(3) structure

N = 2 N = 1 N = 2

spontaneously   
broken

We can consider also SU(3) structure manifolds
with no particular differential property

e
iω

↔ Ω is simply algebraic

Mirror symmetry can still make sense:
same             action (not necessarily vacua)N = 2



Obviously this mirror symmetry is far from proven.
We can use some features of            actions to test itN = 2

In presence of fluxes, hypermultiplet 
isometries get gauged

Calabi-Yau effective action (IIA):

h
1,1 vector multiplets

h
2,1

+ 1 hypermultiplets

(classical) dynamics:
prepotentials

F0(e
iω) F0(Ω)

Example: H NS three-form

∫
αa

H = pa

Dξa = dξa + paA

gauging of a 
“translation” ξa → ξa + εpa

∫
αa

C3 = ξa

In other words: 
        is a moment map

on the space of 
H

Ω s



One can view similarly       as a moment map on the space of Ωdω

For the flux, the gauging extracts the integral part:

∫
αa

H

What is the integral part of dω ?

“Non simplecticity” also 
induces a gauging

[Hitchin; Grana, 
Louis,Waldram]

Proposal: 

expand it  in a basis of 
“massive harmonics”

[Gurrieri, Louis,
Micu, Waldram]

∆βa
= maβa

dω =

∑

a

eaβa

related to
gauging of ξa

The two types of gauging
(flux and differential-geometric)
are mixed by mirror symmetry

[GLMW; Fidanza, Minasian, AT]

Local computation with
         fibrationsT

3

(∇ω + H)ijk ↔ (∇ω + H)ij̄k̄

Before expanding on the differential geometry of gaugings: 

prepotentialsN = 2

hyper-moment map



Are these gaugings only classical?
[work in progress with

A. Kashani-Poor]gauged supergravity requires
that the directions to be gauged be isometries

But generically isometries of  hypermultiplets moduli spaces are
lifted by instantons

Quantum effects would
spoil previous slide

e

∫
Γ

C
= e

∑
a

caξa

instanton dependence
on the             ξa

However dF = H

If       wraps 
there is a nonzero
tadpole for     on

H Γ

ΓF

unless
∫

Γ

H =

∑
capa

= 0

Why?

Flux protects the isometry it wants to gauge
from quantum corrections

isometry on 
instanton:

∑
pa∂ξa

(∑
cbξ

b
)

=

∑
capa



Topology of gaugings and mirror symmetry

By constructing an explicit example, we will test the proposals of 
[GLMW] on gaugings 

The basic phenomenon is standard:

e.g. for 
circle fibrations

Chern class
of the fibration

contracted 
on the fibre

H

a nontrivial fibration with no B-field 
goes into a trivial one with a B-field

We want actually to start from a Calabi-Yau with B-field

[Strominger-Yau-Zaslow]

All CY are 
fibrations

Does mirror symmetry still exist for SU(3) structure manifolds? It would still mean that 4d

effective theory upon compactification onM6 and fM6 are equal – though now, unlike for CY

case, the N = 2 susy is spontaneously broken.

Use SYZ approach to mirror symmetry.

• In the Calabi–Yau case: by considering brane arguments we get the following conjectures:

- All CYs are of the form

T 3 !
"

!! CY

""

S3

Naively this would be

– a trivial fibration

– Betti numbers would be

1 0 0 1

3 0 0 3

3 0 0 3

1 0 0 1
!

"
fibre

base

Naively we would 
have suspicious 
Betti numbers:

Does mirror symmetry still exist for SU(3) structure manifolds? It would still mean that 4d

effective theory upon compactification onM6 and fM6 are equal – though now, unlike for CY

case, the N = 2 susy is spontaneously broken.

Use SYZ approach to mirror symmetry.

• In the Calabi–Yau case: by considering brane arguments we get the following conjectures:

- All CYs are of the form

T 3 !
"

!! CY

""

S3

Naively this would be

– a trivial fibration

– Betti numbers would be

1 0 0 1

3 0 0 3

3 0 0 3

1 0 0 1
!

"
fibre

base

Does mirror symmetry still exist for SU(3) structure manifolds? It would still mean that 4d

effective theory upon compactification onM6 and fM6 are equal – though now, unlike for CY

case, the N = 2 susy is spontaneously broken.

Use SYZ approach to mirror symmetry.

• In the Calabi–Yau case: by considering brane arguments we get the following conjectures:

- All CYs are of the form

T 3 !
"

!! CY

""

S3

Naively this would be

– a trivial fibration

– Betti numbers would be

1 0 0 1

3 0 0 3

3 0 0 3

1 0 0 1
!

"
fibre

base

Does mirror symmetry still exist for SU(3) structure manifolds? It would still mean that 4d

effective theory upon compactification onM6 and fM6 are equal – though now, unlike for CY

case, the N = 2 susy is spontaneously broken.

Use SYZ approach to mirror symmetry.

• In the Calabi–Yau case: by considering brane arguments we get the following conjectures:

- All CYs are of the form

T 3 !
"

!! CY

""

S3

Naively this would be

– a trivial fibration

– Betti numbers would be

1 0 0 1

3 0 0 3

3 0 0 3

1 0 0 1
!

"
fibre

base



So there must be singular fibres.

The quintic has 
10 such faces
which triangulate the base S3

T-duality

For a CY the nontriviality
of the fibration is given
by the monodromies 

around the singular loci

So there must be degenerate fibres

T–duality

Non–triviality of the fibration:

monodromy around singular locus

Example: quintic S3 ∼ pentahedron ⊃ ten 2–faces

!

[Gross; W. -D. Ruan; Zharkov. . . ]

- mirror symmetry: T–duality along T 3

– perturbative symmetry of string theory

– torus←→ dual torus

– monodromy←→ (monodromy)t

Now the cohomology becomes

Z 0 0 Z

0 H1(B,R2π∗Z) H2(B,R2π∗Z) 0

0 H1(B,R1π∗Z) H2(B,R1π∗Z) 0

Z 0 0 Z

The cohomology becomes:



When we add B-field
by analogy with the

case without monodromies
we expect some 
“Chern class”

3-cycle on CY 2-cycle on mirror CY

So there must be degenerate fibres

T–duality

Non–triviality of the fibration:

monodromy around singular locus

Example: quintic S3 ∼ pentahedron ⊃ ten 2–faces

!

[Gross; W. -D. Ruan; Zharkov. . . ]

- mirror symmetry: T–duality along T 3

– perturbative symmetry of string theory

– torus←→ dual torus

– monodromy←→ (monodromy)t

Now the cohomology becomes

Z 0 0 Z

0 H1(B,R2π∗Z) H2(B,R2π∗Z) 0

0 H1(B,R1π∗Z) H2(B,R1π∗Z) 0

Z 0 0 Z

these groups are cycles 
corresponding e.g. to paths:

H contracted on the fibres
is no longer in H

2(base)
(which vanishes)

transverse disc, and e2 and e3 are the vertical forms in the directions unaffected by the

twisting. As for the one which is affected by the twisting, we have de1 = NvolD2 . So we

have Ne2e3volD2 = d(e1e2e3). It is not completely obvious, but we can extend again these

expressions to integral cocycles, as above for the Hopf fibration.

Figure 5: The three–form H is switched on along the red arrows in the quintic (left). The distorted

mirror quintic is defined using a “rugby ball” neighborhood (right). The twisting is on two–chains

in the base which intersects the path transversely. In dashed red is shown one such a transversal

disc. Along the boundary of this neighborhood, the internal T 3s are glued to the external T 3s with

a twisting of an S1 ⊂ T 3, according to the rule φ̃1 ∼ φ1 + Nθ. The locus φ1 =const is shown in

fibres over the internal and external edges, at three different values of θ (down). The two–chain,

in differently dashed red, continues away from the rugby ball.

We can see how this modifies the spectral sequence (2.2). The Chern classes we have just
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We can still define
a “twisted Chern class”                       

described give rise to maps d2 in the page E2 we had above:

E2 : Z

·c1

!!!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
! 0 0 Z

0 H1(B, R2π∗Z) H2(B, R2π∗Z) 0

0 H1(B, R1π∗Z)
·c1

!!!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

H2(B, R1π∗Z) 0

Z 0 0 Z .

(3.5)

We see here once again that our “Chern class” is not actually in H2(B), as usually the name

implies, but lives in H2(B, R2π∗Z). Now, the third page looks like

E3 :

0 0 0 Z

0 H1(B, R2π∗Z) H2(B, R2π∗Z)/Z ⊕ ZN 0

0 H1(B, R1π∗Z)/Z H2(B, R1π∗Z) 0

Z 0 0 ZN

. (3.6)

The argument above for the (Poincaré dual of the) two–cycle was direct; at the same time

we have also gotten that one of the three–cycles has gone away (which we have indicated

fancily as a /Z). We now know that the cycles which are conjugated to these ones should

also disappear or become torsion. These are a four–cycle and a three–cycle (somehow con-

fusingly, these are also often called Poincaré duals). Seeing what happens to the conjugated

three–cycle is less direct. We cannot compute directly the lower d2 map. To do that we

should identify explicitly the map from the disappearing four–cycle. This is not easy: the

intersection matrix between four– and two–cycle is somehow complicated [5] and without a

good idea we are faced with the task of inverting a 101×101 matrix. However, if we simply

put a question mark in the lower right corner, we can use Poincaré duality and the universal

coefficient theorem (it is a standard technique) to nail down the remaining group to be ZN .

(I thank Mark Gross for having pointed this out.)

Were it not for the singularity possibly created in the procedure above, we would have

actually described completely the diffeomorphism class of the distorted mirror quintic. This

is because six–manifolds are completely classified by a theorem by Wall and Z̆ubr which we

will describe in next section. We will also see that topology is not the end of the story as far

as compactifications of supergravity go; one has to supplement also some SU(3)–structure

information.
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in This defines the topology of a 
(half-flat) mirror to CY + flux



.
• introducing H in the CY, some cycles in the T–dual are lost:

Z 0 0 Z

Z H1
2 H2

2 Z

Z H1
1 H2

1 Z

Z 0 0 Z

!!!"

!!!"

Hp
q ≡ Hp(B,Rqπ∗Z)

#

0 0 0 Z

0 H1
2 H2

2/Z ⊕ ZN 0

0 H1
1/Z H2

1 0

Z 0 0 Z?

Compare: S2 × S1 versus S3/ZN

Z 0 Z

Z 0 Z
!!"

# 0 0 Z

Z 0 ZN• some cycles become torsion

TheN in ZN was in the CY a period
R
three−cycle H . This is a consequence of the exchange

cα
1 ←→ Hα, but this time with no reference to the fibration structure

periods ofH ←→ torsion in cohomology

This is once again a covariantization (forgetting the fibration structure).

Further evidence for mirror symmetry. [AT (to appear)]

• Curious: the integer part ofH is
R

C3
H; how does torsion sit in dJ?

described give rise to maps d2 in the page E2 we had above:

E2 : Z

·c1

!!!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
! 0 0 Z

0 H1(B, R2π∗Z) H2(B, R2π∗Z) 0

0 H1(B, R1π∗Z)
·c1

!!!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

H2(B, R1π∗Z) 0

Z 0 0 Z .

(3.5)

We see here once again that our “Chern class” is not actually in H2(B), as usually the name

implies, but lives in H2(B, R2π∗Z). Now, the third page looks like

E3 :

0 0 0 Z

0 H1(B, R2π∗Z) H2(B, R2π∗Z)/Z ⊕ ZN 0

0 H1(B, R1π∗Z)/Z H2(B, R1π∗Z) 0

Z 0 0 ZN

. (3.6)

The argument above for the (Poincaré dual of the) two–cycle was direct; at the same time

we have also gotten that one of the three–cycles has gone away (which we have indicated

fancily as a /Z). We now know that the cycles which are conjugated to these ones should

also disappear or become torsion. These are a four–cycle and a three–cycle (somehow con-

fusingly, these are also often called Poincaré duals). Seeing what happens to the conjugated

three–cycle is less direct. We cannot compute directly the lower d2 map. To do that we

should identify explicitly the map from the disappearing four–cycle. This is not easy: the

intersection matrix between four– and two–cycle is somehow complicated [5] and without a

good idea we are faced with the task of inverting a 101×101 matrix. However, if we simply

put a question mark in the lower right corner, we can use Poincaré duality and the universal

coefficient theorem (it is a standard technique) to nail down the remaining group to be ZN .

(I thank Mark Gross for having pointed this out.)

Were it not for the singularity possibly created in the procedure above, we would have

actually described completely the diffeomorphism class of the distorted mirror quintic. This

is because six–manifolds are completely classified by a theorem by Wall and Z̆ubr which we

will describe in next section. We will also see that topology is not the end of the story as far

as compactifications of supergravity go; one has to supplement also some SU(3)–structure

information.
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cohomology:

What happens to the
disappearing cycles? Together with the remaining ones:

4.1 A basis for KK reduction

We will now see how we are able to recover certain assumptions made in [1] in order to

find the KK reduction of IIA theory on certain SU(3) structure manifolds. It was argued

there that, if one believes that a mirror symmetric manifold to a Calabi–Yau with flux had

to exist, such a mirror needs to have a basis of forms which are not harmonic but which

satisfy certain properties closely related to being harmonic. The reason we care so much

about that particular case is that we hope to get a handle on which mathematical object

should replace harmonic forms for supergravity compactifications on general (non Calabi–

Yau) SU(3) structure manifolds.

The basis comprises two–forms ωi, three–forms αA and βA, and four–forms ω̃i. These

forms satisfy:

i) They must be conjugated to each other:∫
ωiω̃

j = δ j
i ,

∫
αAαB = 0 ,

∫
αAβB = δ B

A ,

∫
βAβB = 0 . (4.1)

ii) The Hodge ∗ has to close within the basis.

iii) Also the exterior differential has to close. More specifically,

dωi = Eiα0 , dαA = 0 , dβA = δA0Eiω̃
i , dω̃i = 0 . (4.2)

(This is not the most general way d could close on the basis; one could have dωi not all

proportional. The most general case has been recently advocated in [22]; from there,

one reduces to (4.2) by taking the rank of a certain matrix to be one. We will not need

that generalization here, for reasons to become apparent later.)

As a physical post scriptum, we should add that the Ei can be made much smaller

than the higher masses of the Laplacian.

iv) There exists an SU(3) structure (J, Ω) whose J is a linear combination
∑

viωi, and

whose Ω is a linear combination of the zAαA+FAβA; coefficients vi, zA, FA are constant

on M . This SU(3) structure satisfies moreover dJ2 = 0 and dReΩ = 0 (which is called

half–flatness).

This assumption actually almost follows from iii). Once nondegenerate (J, Ω) can be

found (which roughly speaking says that the basis “covers the whole of the manifold”;

we will come back on this), it is enough to require that ωiαA = 0 and ωiβA = 0, which
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(conjectured in [GLMW])

needed for KK reduction
and for gaugings

Notice:  
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!
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!
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!
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!
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!
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!
!

!
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!
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(3.5)

We see here once again that our “Chern class” is not actually in H2(B), as usually the name

implies, but lives in H2(B, R2π∗Z). Now, the third page looks like
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Z 0 0 ZN

. (3.6)

The argument above for the (Poincaré dual of the) two–cycle was direct; at the same time

we have also gotten that one of the three–cycles has gone away (which we have indicated

fancily as a /Z). We now know that the cycles which are conjugated to these ones should

also disappear or become torsion. These are a four–cycle and a three–cycle (somehow con-

fusingly, these are also often called Poincaré duals). Seeing what happens to the conjugated

three–cycle is less direct. We cannot compute directly the lower d2 map. To do that we

should identify explicitly the map from the disappearing four–cycle. This is not easy: the

intersection matrix between four– and two–cycle is somehow complicated [5] and without a

good idea we are faced with the task of inverting a 101×101 matrix. However, if we simply

put a question mark in the lower right corner, we can use Poincaré duality and the universal

coefficient theorem (it is a standard technique) to nail down the remaining group to be ZN .

(I thank Mark Gross for having pointed this out.)

Were it not for the singularity possibly created in the procedure above, we would have

actually described completely the diffeomorphism class of the distorted mirror quintic. This

is because six–manifolds are completely classified by a theorem by Wall and Z̆ubr which we

will describe in next section. We will also see that topology is not the end of the story as far

as compactifications of supergravity go; one has to supplement also some SU(3)–structure

information.
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the torsion gives
the mirror to     

and thus the gauging 
H

For more general cases
(not mirrors to CY + flux) 

Ei → Ei
a [D’Auria, Ferrara,

Trigiante, Vaula’]

in the present case we see instead naturally rank one.

.
• introducing H in the CY, some cycles in the T–dual are lost:

Z 0 0 Z

0 H1
2 H2

2 0

0 H1
1 H2

1 0

Z 0 0 Z

!!!"

!!!"

Hp
q ≡ Hp(B,Rqπ∗Z)

#

0 0 0 Z

0 H1
2 H2

2/Z ⊕ ZN 0

0 H1
1/Z H2

1 0

Z 0 0 Z?

Compare: S2 × S1 versus S3/ZN

Z 0 Z

Z 0 Z

!!"
# 0 0 Z

Z 0 ZN• some cycles become torsion

TheN in ZN was in the CY a period
R
three−cycle H . This is a consequence of the exchange

cα
1 ←→ Hα, but this time with no reference to the fibration structure

periods ofH ←→ torsion in cohomology

This is once again a covariantization (forgetting the fibration structure).

Further evidence for mirror symmetry. [AT (to appear)]

• Curious: the integer part ofH is
R

C3
H; how does torsion sit in dJ?



Conclusions

• Differential geometry of brackets useful for 
supersymmetry

• Mirror symmetry can still be defined using 
spontaneously broken supersymmetry

• Truncating the spectrum of SU(3) 
compactifications leads to interesting 
questions in topology vs. differential 
geometry


