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Motivation o1
D3[D7 warped compactifications with flux
are an Excitins arena In which one caw readily,
address

moduli stabilization

realizations of de Sitter space
inflation

stabistics of the landsoape
MSSM~-like model buiiding
SUSH’-breaking soft terms

In many cases with a holographic mberpretation
(due to warping) that lebs™ us view field

theory phennmenq n aa intuibive SeOmetr[onl
Way.

: To what extent are these just alternative

descripﬁgns of more conventional Fluxless
compactifications ?

As usual, N=4 easy = E’,fpﬁi/"ré £t IEA/KBx‘rz
N =2 nonbrivial but tractable
N =1 hard.

We’ll focus on the N=2 case. For N=2,

3 large webs of connected CY¥; vacua.
Are N =2 lux compactiﬂcu’cions part of a
Cll"s W&b ?



N =2 Flux Compactiﬂca‘bions p-2

J Assum'otion of N=2
= orientifold of T° or K3 x T2,
* Focus on Tﬁ/Zz.
% XMaL xm 4 g
:Zz . -f). ("1);" Iﬁ
Ve Ly
WS parity T X™ =2 = X™ Inversion of TE

for m=o states, acts as
=1 on L. Ramond sector

* For Fia) = Hey =0,
T2, 2 bype T on T
via 6 T-dualities,
* 16 D3 — 16 D9

+ 2% 03 + 2° 09

(03 planes are located at the fixed points
of Ib.)



Tﬁ/Zz (continued ) p-3

¢ Té/zz w.o. flux preserves N =4,

°* More generally, can trade D3s for Flux:
' eH*(T%22)

ji e ol

M = #DB} ' Nﬂux = m 2N H(g;'/\ F{a}_

ZM + N'F!ux = 32)

* Metric :
ds* = Z'qu"]pvdx’*dx" + Z% d52‘r6

-g2 p= 4 .2 b3 J‘(x-xi}“ N flux
VT;,Z (27) e 95(%_@' ——-—-1,37_ + V-r&)'

* 5 -form flux :
E{g) = (1+ %) 95'1 d (Z"’dx"x\dx‘:\dx%dx"") 3
(We, do not get to choose Eﬁs).)

* Which Fus), Hsy give N=2. 7



N=2 Flux P-4

* T¢=Z; has only one known choice of
N=2 flux (up to SL(6,2) x5L(2,2) ):

F) = 2m (dx*adx® + dxSadx®) A dx?

Hizy = 2Zn(dx®*adx® + dx5Adx®) A dx .
( Note, S-duality + 90° 89-rotation: mesn )
Tadpole .

$mn+M = 16, M= #¥D3.
canc .
@ SUS‘TJ: G‘{g) = F"-{-s) S Td:lHHJ

must be (2,1) and primiﬁive (TAGa) = 0),

* This = THusez) © T2 (e9)
w.r,t. cpx and Kdhler str
Jcage{:her‘ with further constraints -

(%) T#: dx*adx® + dxSadx® (1,1) and primitive |
T2: dzz dx®+vdx? = -1/1: = %'C'd;l.

= M:-a?.‘ J-o.h = I%T}’nbx-‘. 50 count c:.Px s‘brs.
3 an S% of cpx strs on T* satisfying (). VvV



N=2 TY%Z, mebric moduli p-5

Wwe will u\tima{:dy relate this backgr‘ound

to LA on CY¥Y; via a duality chain™
3 T-dualities + 9-10 circle swap.

To \eading order (in s,ﬁf‘) this reduces
to mappin of massless dof through classical
Supergravity dualities .

So, let us begin by describin
tlfg massless gdoFya‘P N=2 ﬂTb/Zz .

First focus on mebric.

On T") natural to write metric in terms of
z = x‘-a-'c‘j y' and 9iF
4 '
tcpx = @ real dof 4 real dof

but this is redundant since gjﬂn: has 10 real dof.

. For*tuna'l:ely there is another convenient
pnrame'f;erizatmn that aveids this Proble.rn,



N=2 TG/Zz metric moduli (contd) P

. Instead write the T* metric as a
flat T? t+,s) fibration over T2 3) :

v A
2 o 1
ds’y = Tm<, dx*+ T,dx® + a*+<,q°
Vo, 2
F dx® + T, dx*

II‘T’ITz
4 5 :
a™,a° are flat connections
( = const {-forms on T *(¢,7) ).

¢ For Tz, write.

2

2 3
dst = sldxsﬂ- rsdx",

V;
ImT
ImT’s are so that T3z = v, dxadx3, eti.

* SUSY conditions
LT, =-1, (m/ﬂ)TdH"Ua = -1,

(04)? - (as)b ) v”Vg]Va arb{‘bl‘ar)/.



N=2 T722 massless spectrum -7
Flux breaks N=4¢4 to N= 2,

* Ignoring flux, massless fields of orientifold are

{ 4D gravitan My
Bulk {12. 4D vectors J

BM}() CmF |
38 4D scalars  Crnpg ) gon iis it
15 ij 2
M D3 Branes { 4D vector ATu

6 4D scalars FT™

1 N=4% gmvity mult
6+M N =4 vector mults,

. Inclu&d;na flux :

Have 10 unlifted metric moduli/dilaton-axion,
V1,V:,]V3} 2 indep T) 3 indep (ﬂm)n .

2 ~ Z
From l dCis) =~ L BAFE) + T CiaA Hm| = lf:(sj\ )
? vectors eat 9 C(yy axions
Ieawng 3 vectors, 6 C(s) axions.

D3 WV fields unlifted.

In ITAonCYs ¢
1 N=2 aravi’cy mult
= 2+M N=2 Vvector mults = hUi
3+*+M N =2 hyper multe = h?!+



Action of T-dua\ity on NS Flux p-8

Cut

Focus on a T2 in Tb/Z?_ w. H) # 0.

ds® = dx*+dy*+dz?, M = Ndxadyadz,
B(z) = Nxdyadz,

T-dualize 1 the z-direction.
Buscher rules =

ds®* = dx*+ dy® + (d=z+ Nx’dy)z, H=B=o0,
T.e., A= Nxdy, “F = Ndxady.

t f
Ul1) connection [F 1 chern class

T-duality has ‘m’cer*c,hanﬂe.d two S-Fibrations :

1. geometrical g’

2 formal g' of

Nt
connection A = ‘J/Sf B,

gt

curvature F o= r 4
This illustrates a general rule.
( See, e.g., Bouwknegt = Evslin=Mathai ,
Fidanza — Minasian - Tomasiells . )



06/D6 T-dual Orientifold

Sturting from Tb/Zz w. N=2 flux ,
T-dualize in 4,5,9 directions.

p-9

Obtain T2 Fibration over T? in internal dirs :

2 & 2
ds® = = (muddtde +de’ry, ) + 2%dsTs
Here ,
Va < F A
dsi:ﬂu = TmT | dxC+ tdx*, + Rg dx®
2 g Z » R 2
ds-,-:;h " Imi‘c 6*+to® + Ry dx?

m= 4,5,
( FE = Zﬂdbedxs‘] FO = ?.ndx?;\clxs.)

* The x? circle is trivially fibered

M Db + 22 06 wrap T2 fiber.

Have Fr2) lux only.

= Geometrical M theory lift w. no flux !




LA CY Dual of T6/Z2 p- 10
In M theory lift,

Fioy — fibration of x¥ over TTA geom.
D6 T Smooth Taub-NUT space R

|ocn“y

06 Tooal > Smooth Atiyah-Hitchin space
ocally o fR 6,1'

1 i
Also, S¢g; Tactorizes

(Sincé: x? not fibered in TLA
F2) indep of x? 2
warp factors cancel for (dx?) )
Thus,
T*/Z, “> M theory on X, * S,
with N=2 and X, smooth.
= X, 15 a Calabi-You.
¢ Ccmpnct'aFying on S'(a) gives
T2, «* TA on CY X,

(Com]oucfif‘yinﬂ on ‘31{10;C X Hives Ob/Db dual )



Questions for remainder of talk

P 11

* Hodge numbers :

M+2 vector mu\ts) M+ 3 hyper mults
ﬁ hhi — hi;‘l — M+2.

Here, M=16-4mn = 0,4,8, 12,
with different possible (m,n) for each M.

Intersection numbers '?

Fibration structure f?

T (X ) ’?

Discrete isometries ‘7

¥

*m «>n duality 7



Review of D6/06 lift p. 12

* To answer these ciuest-ions) we must

be more sPeciFic about the second

,onch
of the duality

TVZZ > Ob/])b dual <> ITA on CY,
(E.e.;, the circle swap: up on x*, down on x").

« Tt will helao it we first gain mbuition on
leadinﬂ order vs. exact Mt eory lifts [Sen].

From the usual IA < M theory identifications,
lift of (Ieadinﬂ sugra) Db or 06 background
is R™'x X,

dsy = ”Z"R,f(dx‘”i%)z + Zds*

R2)
Re Q £

dA = R, ' *»dZ

where Z = 1 +

1
(=mﬁn IEA).

* For Db, Q=1 and this defines a smooth
Taub-NUT space.

For 06, Q=-4 and this defines the \arﬂe.
radius approximation to on At;iyuh-Hibchin Space..

Tt is sinqular at small enough X, where Z=0,



(.

Review of Dé/Ob ift (cont’d) P.13

H:.::n.mner\.fev*J this metric 1s Jusjc, the
Gruncation of the A-H metric obbtained b
discarding all but The lowest Fourier mode
along x'°,

The comp\e‘be. A-H metric is smooth
(leo he&d Xm; ? o -xio;-?)

* The appr‘oximation Is worst at small ¥

where Z"'-= 00 and the Mtheory circle
decompac’ciﬂes .

* In ITA language y DO branes become

light near “06~ planes, where e — co.

So, need to include sugra fields from
tower of DO bound stabes.

D2 probing 06 : 1-loop moduli space metr“ia)
corrected” to full A-H mebtric by 3D
instantons;

[SEiberg) SeibEr-ﬂ—- Wi'b‘ben] . )



Lift of M Dbs : Homo|09y p-14
M Dés

Same form of metric
ds* = Zqi Rmz(dxlni'A)z '|’Zd51m3)

- o T g _ Ry Q
but now Z =1 *ZE, B

: 3
* S' fiber shrinks over each ¥; on R’ base,

so obtain 52 from fibration over curves
connecting pairs  Xp, Xy :

T Sry

* Basis of Hg(z) (s 5512 3 D233 seey SM-i,Mi‘ X

» Intersections : Sr,x+1t * Srer e =1,

SIJI"" ¥ - 2 )

2 1
i =2y
= L = { . s -Cartan(An_J.

1 -2



ift of M Dés: Cohomology p- 15

Similarly, obtain one L, harmonic form
tfor each center:

¥ = (ZVZ),M(-dx’“A(dx‘”i-A)*"IR,;' Volﬁgmnpdx“adx")

(\ocal[y d [ A - (27/2)(de+A)] ) :

The F7 are anti - selfdual , and satis{-‘)/

FEAE® & =d™®
X4 '

The 2-form w7 = FT-E" js Poincoré
dual 'bﬂ 'bhﬂ. SPhET‘Q 5::,;1' .

g wI’TA wK,L = SIJ . SK,I—. i
1.

It will be more convenient to work with
cohomology when we discuss the CY; duals
of TYZ;"



Lift of 06 + M Dbs (end of review) p.16

Now have

ds, = Z“Fs‘.:'(e-.tu:"’-a--A)1 + st:z,ﬁz

| Bw |_4 . ! ]
with Z= 1+ g [ 1X] +a§1(|?‘?3| o l?'*?"'l)]
" ?

0b M D6 M image Db’

modulo x'* ¥ = -x', -%.

* Obtain 5* from S'-fibration btw centers :
¥ Exg imaﬂe. ( SI,T)

+ Z, imase ( SI,;r’).

The spheres Sz z. (T=1,..,M) ond SM-1,M".
form a simple basis w. Dy intersection mabrix.

Metric is sfngulqr at small ¥ but can choose
representabive Cycles that avoid this regian .

So, obbtain correct topological data (intersection
matrix) From singular leading order lift.
( Likewise for cnhomology.)



Leading Order CY; Metric Dual to T722 p. 17

* Now return to 06/D6 dual of T*/z,
and perform ieading order M theory it
+ S'(x2) com\oac’ciftca'bion. Obtain IIA on

V/ 2 o 2
ds’cy, - le*ﬂes'_ + 2Ry (d*+A)" fib
\ 2
+ Ir:t, ,dx”+*1:dx? = ZR:dx“Q) base

modulo x*,% 2 -x"-%¥ (%= x4x%x*%).

I

* Here : V.{, (vm/n) RgRiwp )

+,5 fibrations are as before,

dA = R,{’T*adz - 2m(@*adx®- 6% dx* ).
)
like Taub-NUT /A-H new

* There is a natural cpx pairing, w. (1,0) forms

6%+ 107, dx®+tdx?, Zdx®+it(dx’+A), t=E§£~.
A 3
modulus JA = adx?®

* Can compube corresponding T, Q; find that
dy=dQ =0 away from 8 P‘bs on T'aa“ (-From 065).

= SU(3) holenomy away from Z<£0 r‘egfon.



Validity of leading order description p.13

Can show that = = 1+%'\,:.—'2;

with 2 = 0(1) as v//v, = 0.”

* By bunin V17Vz; can make bad Z£0
regions ~smaller and smaller.

* Leading order metric becomes an ar‘bi'br‘ar'i\y
goed approximation at most points .

* Nothing special happoens at bad loct
(~ AP0 x RE in Full PR ).

So, expect homology Lo be reliably computable
by leading order déscription of ddality.



Intersection numbers of cv, duals

P,‘l?

* Define Kahler moduli s,h by

with (m,n =(m,n)/acd(m,n).
* The Kahler form is JT = Sws-l-th)

W= I‘Tl"'lj Vo = 28, RgRiw = ﬁh;

(-Us = Q.dxbf\ dx? )

Wy = MO*AO% + 2Zdx’Adx™ + Adx*A (dx®+A)

Also have M harmonic fForms
{.L)T = FT- FT:
F¥ = (z"/z),m[-dm(dx“m) + 3 2Ry Vol,"np dx"adx{l
4 (Z’/Z)Zm (6*Adx* - 85Adx*).

* Can check that the w Span Hﬁ()(ﬁ,}Z) usin

B € H(R)/H*(Z) and ’periodicities like Cipy22 Cpopt
in T®/Z, dual.

* Intersection numbers are A-B:C = "z'fwmwaﬂwc-
1«

Z, coordinate \dentification

>1H% 5 = 2m7

y H'I.T = -mdrr, others =0,




Fibration structure of CY; duals  p.20

* C¥; metric came out as a fbration over T?%/Z,,
but T°/Z, nonorientable , so not a useful Abration,

* Instead, view as fibration over Tiu,,;) = [P1.

Xa was T:L(.q.’5) 'Fibﬂre.d over Ta 6,%,8) )
S L10) ﬂbered over tha )
mod Z;(0,7,8,10) .

All fibration curvatures restrict trivially to x*?=cons
= generic fiber over P'(, ;) is just T+ !
Fiber is on abelian surface :
=~ The Kahler form is J= hw,
W = mdy*ady® + Ady®adyto,
where (#,5)€ § (1,1),01,2),(1,3), (1,4), + inberchanges } .

= TIn general, when T* has J= w,

d ‘ -
w = z o; dxil-—iA dxm ;

fwl is called a Polarization and determines an
Embe.dding of T in a Projeo'bive space,

Then T =

Qi I Qiv1 )

abelian variety (d=2, abelian surPace)



Homoloay of CV¥; duals p. 21

Can now give a simple description of the
divisors dual to our cohomology basis .

o Ws |
Dual to S=T% (obelian surface fiber ),

L3 wH

_ hyperplane divisor of T*
Dual to H = ﬂgepredpover P' base.

¢ UJI};,- = w: == w:r'

Dual to 4-cycle from Ti(q-’g}x S
fibration over T3/Z, base:

X O € S' shrinks at &ndpoinbs

(4,5) E {10) = e zi |ma3e
le
xI

(Agnin, can choose cycles that avoid sinﬁular loc )



Check of fibration result p- 22

« As a check that the CY; duals of N=2 :
T¢/Z, are abelian surface fibrations over P,
note

Thm (Oguiso): Given C¥; with a divisor D
s.t. D=0 and D is nef (ie, D-Cc =0
For all algebraic curves C),

=~ CYa is fibration over P°
= fibers are K3 or abelian surface ,

We have S°=0.
S: =2 =const, is effective = nef.
T xopex?

g K3orT+?

Have S‘Cz(Xg) == ’X(S) - {O T

24 K3.
The LHS appears in
F, = -f‘-'-';?'- g (Du ) Gz(xg))'t“ + WS instantons .

F. enters in the choupung < Re F1tr(R—iR*)2.

. Het
In TVZ;, as In orXI T"’, Fy= Tail +°--,

We will see that 1/gs of T2z, < h of C¥5 -

=  A(S) = S-c(Xe) =0, abelian surface.



T, and discrebe isometries of CY; duals p.23

* From kinetic Yerms in T"/zg )
=
|dCi4y = ZBmAFa) + %Ctzlf\Ht's)‘ )
C4) has axionic Cauplingﬁ to B(a)n’.l and C{z}bH.

* When C4) c.ouple.s to NBizap or NC(2)bu, the
corresponding gauge symmebry Is brokento Zy .

This tells us about Torsion cycles and
discrete 1sometries :

Charge Gauge sym (Cv;) T°/Z, field TA CY, field

m Z - ( wmdmg) Cu,) 4p Blz}gp
m Zm (winding) Casy B2)ap
n Zn (isomebry) Biz)4pu A%y (kK vector)
n. Zn (isometry) Bu)sp A%y (KK vector)

(+ other discrete gauge symme.trie.s that correspond
o 'nighar- dimensional ‘torsion cycles )

= Zm* Zm Wlndlﬂj ) Ly X Zn iSometr")/.
Hi(Xe,Z)= ZmxZn ( = ’1I1/cammu{:atars).
* T-duality in{:arc.hanges winding and 1sometries,

m < n duuliby a |- duuiity O



T¢/Z, S-dudiby as CY, T-dualiby  p.2¢

* ITn the T*/Z, orientifold with N =2 flux

F(;)/(zq:)"ot' = 2m (d}("'ndxb +dxAdx?) Adx? )
Ha/ar)e! = 2n (dx*adx® +dx5Adx?) Adx?® ,

we can interlore.t me n interchange as
S-duality ® "90° 89-rotation. Here,

5 { gs T §s = 1/gs,
: Vo

Rm /o’ — (Rmfa’) = é;(ﬂm/u’),
We can map this duality to the LA CY; dual

descrip’cion. It acts on the Kiahler modulus
h as

S
732 IR (_'E"_b_... ) = lam)s’ |
(2T) e’ (27m) %’ mh

(I.e,., it inverts the T* volume.)

* S0, men dun(ity 'S

T2, CYs
m & n L
S-duality s *  T-dudliby of
@ Rgq(90°%) entire T+ fiber,



Are these C¥Ya3 known ? p- 25

First Place. to look :

Kreuzer and Skarke have tabulated all
473, 800, 766 reflexive polyhedra in 4D,

So, all hype.rsurf"nce. C¥3 s known, and T =0
all connected thrauﬂh flops + conifolds, k

Look for

o v
(ht, ht) = (2,2),(6,6))(10,10)) (14,14}, w. m=1.
Find three (14,14) candidates ...

but do not appear to be abelian surface
fibrations.

CY3 duals of T®/ 2, do not seemto be in
the known web, but could still be in other
large webs bhat' remain to be explored

(or, could be isolated).



Are these CY3 known ’? (contd)

P.za

Another guess :
¢ Appearance. of T2% moduli

T wn 4,5 and b,7 directions

Pt

T in 8,10 directions

Suggests

(Etht )/P

&Hlp‘[;u:. curves di 5cr¢+.e group

* For ™"=Dg, obtain (h‘*']hz”) - (2,'2) J

but wrong €z(X,) and Ty(X,).

* Still an open problem to |dentafy explicit

constructions of the C¥, duals

X



Whot could we learn from
Explicit constructions ’? p. 27

* Could ask about flops and extremal
transitions. (Web or isolated 7 )

* Rational curves € CYy = WS instantons
< dual T%Z instantons,

= This would tell us about instantons
in T¢ 2z, that are not curre.ntly known.

(E,S.} P' seckion of T4 fibration =
D3 instanton on T*c T2, .)

Pote.ntially useful for model bqildfnﬂ
on chiral orientifolds of T&/,

- Most (all?) CvY; other than free

uotients of T® have rational curves.
9

Our CY3 are not free quotients of T*
Since €2 % O.

So, either learn about new CV; w.o.
caCional curves or gain prediction for
instanton corrections to T Z,.



Conclusions p- 28

We have seen that

CVY3 duals of Tb/Zl with N=2 flux have :

« (W, h*") = (2,2)" (6,6)% (10,10)" (14,14)"

* Degeneracies distinguished by (m;n)
4n = 16-M, h"' = h*' = M+2

* Zm X Zy winding Zn x Zn \Sometry

* Tntersection numbers

2, = Zmn . - m _
NS T Gedimmny® > WTT = -~ iy 57

* Abelian surface (T+) fibrations over P'.

We tdentified men interchange with
* S-duallty @ qu(%") T'"/E?_
* T-duality of entire T* fiber C¥;.



Quuestions p- 29

Would like to identify these CY; in
terms of concrete alaebro—ge.ometric,
constructions.

* Could then ask about flops and
extremal transitions (i.e., web),

* Rational curves/ws instanton ?

This would teach us about instantons

in T°/Z, or new CY3 without
rational curves.

Flﬂﬁ“Y)

* To what exent are there standard
(Flux\essg duals of N=1 ¥flux
compactifications ?



