Mapping Flux to Geometry:

Calabi-Yau Duals of Torus Orientifolds

Michael Schulz March 2005

Based on

hep-th/020128 S. Kachru, MS, S. Trivedi

hep-th/0211182 S. Kachru, MS, P. Tripathy, S. Trivedi

hep-th/0406001 MS

hep-th/0412270 MS

D3/D7 warped compactifications with flux are an exciting arena in which one can readily address

moduli stabilization realizations of de Sitter space inflation statistics of the landscape MSSM-like model building SUSY-breaking soft terms

in many cases with a holographic interpretation (due to warping) that lets us view field theory phenomena in an intuitive geometrical way.

Q: To what extent are these just alternative descriptions of more conventional fluxless compactifications?

As usual, N=4 easy \cong type I/ $T^6 \cong$ $TA/K3 \times T^2$ N=2 nontrivial but tractable N=1 hard.

We'll focus on the N=2 case. For N=2, \exists large webs of connected CY3 vacua. Are N=2 flux compactifications part of a CY3 web?

• Assumption of N=2

· Focus on T6/Z2.

$$T^6: X^m \cong X^m + 1$$

for m=0 states, acts as -1 on L Ramond sector

• For $F_{(3)} = H_{(3)} = 0$, $T^6/\mathbb{Z}_2 \cong \text{type I on } T^6$ via 6 T-dualities.

(03 planes are located at the fixed points of I6.)

- T^6/\mathbb{Z}_2 w.o. flux preserves N=4.
- · More generally, can trade D3s for flux:

$$2M + N_{flux} = 32,$$
 $\in H^2(T^6, 2\mathbb{Z})$
 $M = \# D3, \quad N_{flux} = \frac{1}{(2\pi)^2 \alpha'^4} \int_{T^6} H_{(3)} \wedge F_{(3)}.$

· Metric :

$$ds^{2} = Z^{-1/2} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + Z^{1/2} ds^{2}_{T6}$$

$$- \nabla^{2}_{T6} Z = (2\pi)^{4} \alpha'^{2} g_{s} \left(\sum_{i} Q_{i}^{D3} \frac{\int_{0}^{6} (x - x_{i})}{\sqrt{g_{T6}}} + \frac{N_{flux}}{V_{T6}} \right).$$

· 5-form flux:

$$\widetilde{F}_{(5)} = (1+*) g_5^{-1} d \left(Z^{-1} dx^0 \wedge dx^1 \wedge dx^2 \wedge dx^3 \right).$$
(We do not get to choose $\widetilde{F}_{(5)}$.)

· Which F(3), H(3) give N = 2 ?

• T^6/\mathbb{Z}_2 has only one known choice of N=2 flux (up to $SL(6,\mathbb{Z})\times SL(2,\mathbb{Z})$):

F(3) = 2m (dx4ndx6+dx5ndx7) ndx9

 $H_{(3)} = 2n(dx^4 \wedge dx^6 + dx^5 \wedge dx^7) \wedge dx^8.$

(Note, S-duality + 90° 89-rotation: m +> n.)

Tadpole: 4mn + M = 16, M = # D3.

- SUSY: $G_{(3)} = F_{(3)} \tau_{dil} H_{(3)}$ must be (2,1) and primitive ($J \wedge G_{(3)} = 0$).
- This \Rightarrow T⁴(4567) × T²(89) w.r.t. cpx and Kähler str,

together with further constraints:

- (*) T^4 : $dx^4 \wedge dx^6 + dx^5 \wedge dx^7$ (1,1) and primitive, T^2 : $dz \equiv dx^8 + \tau dx^9 \implies -1/\tau = \frac{m}{n} \tau_{dil}$.
- N=2: $J_a{}^b = i\chi^{\dagger} Y_a{}^b \chi$, so count cpx strs. \exists an S^2 of cpx strs on T^4 satisfying (*). \checkmark

We will ultimately relate this background to IIA on CY3 via a duality chain:

3 T-dualities + 9-10 circle swap.

To leading order (in g_s, α') this reduces to mapping of massless dof through classical supergravity dualities.

So, let us begin by describing the massless dof of N=2 T^6/Z_2 .

First focus on metric.

• On T^4 , natural to write metric in terms of $Z^i = x^i + \tau^i j y^j$ and $g_i j$ $f_i = x^i + \tau^i j y^j \quad \text{and} \quad g_i j$ $f_i = x^i + \tau^i j y^j \quad \text{and} \quad g_i j$ $f_i = x^i + \tau^i j y^j \quad \text{and} \quad g_i j$

but this is redundant since gmn has 10 real dof.

· Fortunately there is another convenient parameterization that avoids this problem.

 Instead, write the T[†] metric as a flat T²(4,5) fibration over T²(6,7):

$$ds^{2}_{T^{4}} = \frac{V_{1}}{Im \tau_{1}} \left| dx^{4} + \tau_{1} dx^{5} + a^{4} + \tau_{1} a^{5} \right|^{2} + \frac{V_{2}}{Im \tau_{2}} \left| dx^{6} + \tau_{2} dx^{7} \right|^{2}.$$

$$a^4$$
, a^5 are flat connections
$$\left(= \text{const } 1\text{-forms on } T^2_{(6,7)} \right).$$

· For T2, write

$$ds_{T^2}^2 = \frac{V_3}{Im T_3} \left| dx^8 + T_3 dx^9 \right|^2.$$

Im I's are so that JT2 = V3 dx andx9, etc.

· SUSY conditions:

$$\tau_1 \, \tau_2 = -1, \quad (m/n) \, \tau_{dil} \, \tau_3 = -1, \\
(a^4)_7 = (a^5)_6, \quad v_1, v_2, v_3 \text{ arbitrary.}$$

N=2 T⁶/Z₂ massless spectrum

p. 7

Flux breaks N=4 to N=2.

· Ignoring flux, massless fields of orientifold are

Bulk
$$\begin{cases} 1 & 4D & \text{graviton} & g_{\mu\nu} \\ 12 & 4D & \text{vectors} & B_{m\mu}, C_{m\mu} \\ 38 & 4D & \text{scalars} & C_{mnpq}, g_{mn}, T_{dil} = C_0 + ie^{-\phi} \\ 15 & 21 & 2 \end{cases}$$

$$\Rightarrow$$
 1 $N=4$ gravity mult 6+M $N=4$ vector mults.

· Including flux :

Have 10 unlifted metric moduli dilaton-axion, V1, V2, V3, 2 indep t, 3 indep (am)n.

From
$$\left| dC_{(4)} - \frac{1}{2}B_{\Lambda}F_{(3)} + \frac{1}{2}C_{(2)}\Lambda H_{(3)} \right|^2 = \left| \widetilde{F}_{(5)} \right|^2$$
, 9 vectors eat 9 $C_{(4)}$ axions leaving 3 vectors, 6 $C_{(4)}$ axions.

D3 WV fields unlifted.

D3 WV fields unlitted.

1
$$N=2$$
 gravity mult

2+M $N=2$ vector mults

3+M $N=2$ hyper mults

 $= h^{1,1}$
 $= h^{2,1} + 1$

$$\frac{\text{In IIA on CY3:}}{= h^{1,1} \\ = h^{2,1} + 1}$$

Focus on a T3 in T6/Z2 W. H(3) # 0.

$$ds^2 = dx^2 + dy^2 + dz^2$$
, $H_{(3)} = N dx \wedge dy \wedge dz$, $B_{(2)} = N x dy \wedge dz$.

T-dualize in the z-direction. Buscher rules >

$$ds^2 = dx^2 + dy^2 + (dz + Nx dy)^2$$
, $H = B = 0$.

I.e.,
$$A = Nxdy$$
, $F = Ndx \wedge dy$.

U(1) connection [F] chern class

T-duality has interchanged two S1-fibrations:

- 1. geometrical S1
- 2. formal S' of

connection
$$\widetilde{A} = -\int_{S^1} B$$
, curvature $\widetilde{F} = \int_{S^1} H$.

This illustrates a general rule.

(See, e.g., Bouwknegt - Evslin-Mathai,
Fidanza - Minasian - Tomasiello.)

Starting from T^6/Z_2 w. N=2 flux, T-dualize in 4,5,9 directions.

· Obtain T3 fibration over T3 in internal dirs:

$$ds^{2} = Z^{-1/2} \left(\eta_{\mu\nu} dx^{\mu} dx^{\nu} + ds^{2}_{fib} \right) + Z^{1/2} ds^{2}_{base}.$$

Here,

$$ds_{T_{base}}^{2} = \frac{V_{2}}{Im\tau} \left| dx^{6} + \tau dx^{7} \right|^{2} + R_{8}^{2} dx^{8}^{2}$$

$$ds_{T_{fib}}^{2} = \frac{V_{1}'}{Im\tau} \left| \theta^{4} + \tau \theta^{5} \right|^{2} + R_{9}'^{2} dx^{9}^{2}$$

with
$$\theta^{m} = dx^{m} + A^{m}$$
, $m = 4,5$.
 $(f^{4} = 2ndx^{6} \wedge dx^{8})$ $f^{5} = 2ndx^{7} \wedge dx^{8}$.

- · The xo circle is trivially fibered.
- · M D6 + 23 06 wrap T3 fiber.
- · Have F(2) flux only.
- ⇒ Geometrical M theory lift w. no flux!

· In M theory lift,

Also, Sig, factorizes

· Thus,

$$T^6/Z_2 \leftrightarrow M$$
 theory on $X_6 \times S_{(9)}^1$

with N=2 and X_6 smooth.

· Compactifying on S'(9) gives

$$T^6/Z_2 \leftrightarrow IIA$$
 on CY₃ X₆.

(Compactifying on S'(10) = X6 gives 06/D6 dual.)

Which CY3 ?

· Hodge numbers :

M+2 vector mults, M+3 hyper mults $\Rightarrow h^{1,1} = h^{2,1} = M+2$.

Here, M = 16 - 4mn = 0,4,8,12, with different possible (m,n) for each M.

- · Intersection numbers ?
- · Fibration structure ?
- · TL1(X6) ?
- · Discrete isometries ?
- · m n duality ?

 To answer these questions, we must be more specific about the second part of the duality

$$T^6/Z_2 \leftrightarrow 06/D6 \text{ dual} \cong IIA \text{ on } CY_3$$
 (i.e., the circle swap: up on x^{10} , down on x^9).

- · It will help if we first gain intuition on leading order vs. exact M theory lifts [Sen].
- From the usual IIA

 M theory identifications, lift of (leading sugra) D6 or O6 background is R^{6.1} × X₄:

$$\begin{split} ds_4^2 &= Z^{-1} \, R_{10}^{\ \ 2} \big(\, dx^{10} + A \big)^2 \, + \, Z \, ds_{\, \mathbb{R}^3}^2 \, \big) \\ \text{where } Z &= 1 + \frac{R_{10}}{8 \, \pi^2} \, \frac{Q}{|\vec{X}|} \quad \vec{X} \in \mathbb{R}^3 \\ dA &= R_{10}^{-1} \, *_3 \, dZ \quad \left(= \frac{1}{2 \, \pi \, \sqrt{\alpha'}} \, F_{(2)} \, \, \text{IIA} \, \right). \end{split}$$

- For D6, Q = 1 and this defines a smooth Taub-NUT space.
- For 06, Q = -4 and this defines the large radius approximation to an Atiyah-Hitchin space.

It is singular at small enough \vec{x} , where Z=0.

 However, this metric is just the truncation of the A-H metric obtained by discarding all but the lowest Fourier mode along x¹⁰.

The complete A-H metric is smooth (also need $x^{10}, \vec{x} \cong -x^{10}, -\vec{x}$).

- The approximation is worst at small \vec{x} where $Z^{-1} \rightarrow \infty$ and the M theory circle decompactifies.
- " In IIA language, DO branes become light near O6 planes, where e+ → ∞.

So, need to include sugra fields from tower of DO bound states.

(D2 probing 06: 1-loop moduli space metric, corrected to full A-H metric by 3D instantons;

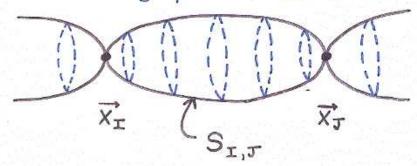
[Seiberg, Seiberg-Witten].)

M D6s

· Same form of metric

$$ds^{2} = Z^{-1}R_{10}^{2}(dx^{10} + A)^{2} + Zds_{\mathbb{R}^{3}}^{2},$$
but now $Z = 1 + \sum_{J=1}^{M} Z^{J}, Z^{J} = \frac{R_{10}}{8\pi^{2}} \frac{Q}{|\vec{X} - \vec{X}_{J}|}$.

· S¹ fiber shrinks over each $\vec{x_J}$ on \mathbb{R}^3 base, so obtain S^2 from fibration over curves connecting pairs $\vec{x_I}$, $\vec{x_J}$:



- · Basis of H2(Z) is {S12, S23, ..., SM-1, M}.
- Intersections: $S_{I,I+1} \cdot S_{I+1,I+2} = 1$, $S_{I,I+1}^2 = -2$,

$$\Rightarrow I = \begin{pmatrix} -2 & 1 \\ 1 & -2 & 1 \\ 1 & \cdot & \cdot \\ 1 & -2 \end{pmatrix} = -Cartan(A_{M-1}).$$

· Similarly, obtain one L2 harmonic form for each center:

$$F^{J} = (Z^{J}/Z)_{,m} \left(-dx^{m} \wedge (dx^{10} + A) + \frac{1}{2} R_{10}^{-1} \text{ Vol}_{R^{3}}^{m}_{np} dx^{n} \wedge dx^{p}\right)$$

$$\left(\text{locally} \quad d\left[A^{J} - (Z^{J}/Z)(dx^{10} + A)\right]\right).$$

· The F are anti-selfdual, and satisfy

$$\int_{X_4} F^{\mathbf{I}} \wedge F^{\mathbf{J}} = -\delta^{\mathbf{I}^{\mathbf{J}}}.$$

The 2-form $\omega^{I,J} = F^I - F^J$ is Poincaré dual to the sphere $S_{I,J}$:

$$\int_{X_{+}} \omega^{\mathrm{I},\mathrm{T}} \wedge \omega^{\mathrm{K},\mathrm{L}} = \mathrm{S}_{\mathrm{I},\mathrm{T}} \cdot \mathrm{S}_{\mathrm{K},\mathrm{L}} \ .$$

* It will be more convenient to work with cohomology when we discuss the CY3 duals of T^6/\mathbb{Z}_2 .

Lift of 06 + M D6s (end of review) p.16

· Now have

$$ds_4^2 = Z^{-1}R_{10}^2(dx^{10}+A)^2 + Zds_{R^3}^2$$

with
$$Z = 1 + \frac{R_{10}}{8\pi^2} \left[-\frac{4}{|\vec{x}|} + \sum_{J=1}^{M} \left(\frac{1}{|\vec{x} - \vec{x}_J|} + \frac{1}{|\vec{x} + \vec{x}_J|} \right) \right]$$

Ob M D6 M image D6'

modulo $x^{10}, \vec{x} \cong -x^{10}, -\vec{x}$.

· Obtain S2 from S'-fibration btw centers:

$$\vec{x}_{I} = \vec{x}_{J} + Z_{2} \text{ image} \qquad (S_{I,J})$$

$$\vec{x}_{I} = -\vec{x}_{J} + Z_{2} \text{ image} \qquad (S_{I,J}).$$

- * The spheres $S_{I,I+1}$ (I=1,...,M) and $S_{M-1,M'}$ form a simple basis w. DM intersection matrix.
- · Metric is singular at small x' but can choose representative cycles that avoid this region.
- So, obtain correct topological data (intersection matrix) from singular leading order lift. (Likewise for cohomology.)

* Now return to O6/D6 dual of T^6/Z_2 and perform leading order M theory lift $+ S^1(x^9)$ compactification. Obtain IIA on

$$ds^{2}_{CY_{3}} \simeq \frac{V_{1}^{\prime}}{Im\tau} \left| \theta^{4} + \tau \theta^{5} \right|^{2} + Z^{-1}R_{10}^{2} (dx^{10} + A)^{2} \quad fib$$

$$+ \frac{V_{2}}{Im\tau} \left| dx^{6} + \tau dx^{7} \right|^{2} + ZR_{8}^{2} dx^{8}^{2}, \quad base$$

modulo
$$x^{10}, \overrightarrow{x} \cong -x^{10}, -\overrightarrow{x}$$
 $(\overrightarrow{x} = x^6, x^7, x^8)$.

• Here: $V_1' = (m/n) R_8 R_{10}$

4,5 fibrations are as before,

$$dA = R_{10}^{-1} *_3 dZ - 2m(\theta^4 \wedge dx^7 - \theta^5 \wedge dx^6).$$
like Taub-NUT/A-H new

. There is a natural cpx pairing, w. (1,0) forms $\Theta^4 + \tau \Theta^5$, $dx^6 + \tau dx^7$, $Z dx^8 + it(dx^{10} + A)$, $t = \frac{R_{10}}{R_0}$. modulus SA = adx8

- · Can compute corresponding J, Ω ; find that $dJ = d\Omega = 0$ away from 8 pts on T_{base}^3 (from 06s).
 - \Rightarrow SU(3) holonomy away from $Z \leq 0$ region.

Can show that $Z = 1 + \frac{n}{m} \frac{V_1}{V_2} \hat{Z}$, with $\hat{Z} = O(1)$ as $V_1/V_2 \rightarrow 0$.

- * By tuning V_1/V_2 , can make bad $Z \le 0$ regions smaller and smaller.
- · Leading order metric becomes an arbitrarily good approximation at most points.
- · Nothing special happens at bad loci (~ A-H x R2 in full lift).

So, expect homology to be reliably computable by leading order description of duality.

· Define Kähler moduli s,h by

$$V_1' = \overline{m}h$$
, $V_2 = 25$, $R_8R_{10} = \overline{n}h$, with $(\overline{m}, \overline{n}) = (m, n)/qcd(m, n)$.

The Kähler form is $J = s\omega_s + h\omega_H$

$$\omega_s = 2 dx^6 \wedge dx^7$$

$$\omega_{H} = \overline{m} \theta^{4} \wedge \theta^{5} + 2 \hat{z} dx^{6} \wedge dx^{7} + \overline{n} dx^{8} \wedge (dx^{10} + A)$$

Also have M harmonic forms

$$\omega_{\text{J}} = F^{\text{J}} - F^{\text{J}},$$

$$F^{J} = (Z^{J}/Z)_{,m} \left[-dx^{m} \wedge (dx^{10} + A) + \frac{1}{2} Z R_{10}^{-1} Vol_{3}^{m}_{np} dx^{n} \wedge dx^{p} \right] + (Z^{J}/Z) 2m (\theta^{4} \wedge dx^{7} - \theta^{5} \wedge dx^{6}).$$

- * Can check that the ω span $H^2(X_6,\mathbb{Z})$ using $B_{(2)} \in H^2(\mathbb{R})/H^2(\mathbb{Z})$ and periodicities like $C_{(0)} \cong C_{(0)}+$ in T^6/\mathbb{Z}_2 dual.
- * Intersection numbers are $A \cdot B \cdot C = \frac{1}{2} \int \omega_{A} \wedge \omega_{B} \wedge \omega_{C}$.

 Z₂ coordinate identification

$$\Rightarrow$$
 $H^2 \cdot S = 2\overline{m}\overline{n}$, $H \cdot I \cdot J = -\overline{m} \delta_{IJ}$, others = 0.

- CY3 metric came out as a fibration over T^3/\mathbb{Z}_2 ; but T^3/\mathbb{Z}_2 nonorientable, so not a useful fibration.
- * Instead, view as fibration over $T^2_{(6,7)} \cong \mathbb{P}^1$.

$$X_6$$
 was $T^2_{(4,5)}$ fibered over $T^3_{(6,7,8)}$, $S^1_{(10)}$ fibered over that, $\mathbb{Z}_2(6,7,8,10)$.

All fibration curvatures restrict trivially to x6,7 = cons

- ⇒ generic fiber over P'(6,7) is just T4!
- · Fiber is an abelian surface:
- The Kähler form is J = hw,

where (m,n)∈ {(1,1), (1,2), (1,3), (1,4), + interchanges}.

- In general, when T^{2d} has Jxw,

$$\omega = \sum_{i=1}^{d} a_i dx^{2i-1} \wedge dx^{2i}$$
, $a_i | a_{i+1}$

[w] is called a polarization and determines an embedding of T2d in a projective space.

Then T^{2d} = abelian variety (d=2, abelian surface)

Can now give a simple description of the divisors dual to our cohomology basis.

· ws

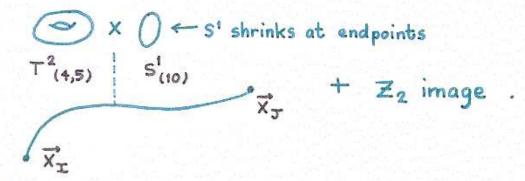
Dual to S = T4 (abelian surface fiber).

· WH

Dual to H = hyperplane divisor of T4 fibered over P' base.

• $\omega_{\text{I},\text{J}} = \omega_{\text{I}} - \omega_{\text{J}}$

Dual to 4-cycle from T2 (4,5) x S1 (10) fibration over T3/Z2 base:



(Again, can choose cycles that avoid singular loci.)

As a check that the CY3 duals of N=2
 T⁶/Z₂ are abelian surface fibrations over IP¹, note

Thm (Oguiso): Given CY3 with a divisor D s.t. $D^2 = 0$ and D is nef (i.e., $D \cdot C \ge 0$ for all algebraic curves C),

- CY3 is fibration over P1
- fibers are K3 or abelian surface.

We have $S^2 = 0$. $S: \mathbb{Z}^2 = \text{const.}$ is effective \Rightarrow nef. $C_{\times 6+\mathbb{T}^2}$

· K3 or T4?

Have $S \cdot c_2(X_6) = \chi(5) = \begin{cases} 0 & T^4 \\ 24 & K3. \end{cases}$

The LHS appears in

 $F_1 = -\frac{4\pi i}{12} \sum_{\alpha} \left(D_{\alpha} \cdot C_2(X_6) \right) t^{\alpha} + WS \text{ instantons.}$

 F_1 enters in the R^2 coupling $\propto Re \int F_1 tr (R-iR*)^2$.

In T^6/Z_2 , as in or I/T^6 , $F_1 = Tdil + \cdots$. We will see that $1/g_s$ of $T^6/Z_2 \iff h$ of CY_3 .

 $\Rightarrow \chi(s) = S \cdot c_2(\chi_6) = 0$, abelian surface.

· From kinetic terms in T6/Z2,

C(4) has axionic couplings to B(2) and C(2) by.

* When $C_{(4)}$ couples to $NB_{(2)a\mu}$ or $NC_{(2)b\mu}$, the corresponding gauge symmetry is broken to \mathbb{Z}_N .

This tells us about torsion cycles and discrete isometries:

Charge Gauge sym (CY3) T6/Z2 field IIA CY3 field

m
$$\mathbb{Z}_m$$
 (winding) $C_{(2)}$ $_{4\mu}$ $B_{(2)}$ $_{5\mu}$ $_{m}$ \mathbb{Z}_m (winding) $C_{(2)}$ $_{5\mu}$ $B_{(2)}$ $_{4\mu}$ \mathbb{Z}_n (isometry) $B_{(2)}$ $_{4\mu}$ A^4_{μ} (KK vector) \mathbb{Z}_n (isometry) $B_{(2)}$ $_{5\mu}$ A^5_{μ} (KK vector)

(+ other discrete gauge symmetries that correspond to higher dimensional torsion cycles.)

$$\Rightarrow$$
 $\mathbb{Z}_m \times \mathbb{Z}_m$ winding, $\mathbb{Z}_n \times \mathbb{Z}_n$ isometry.
 $H_1(X_6, \mathbb{Z}) = \mathbb{Z}_m \times \mathbb{Z}_m \ (= \pi_1/\text{commutators}).$

· T-duality interchanges winding and isometries.

* In the T^6/Z_2 orientifold with N=2 flux

$$F_{(3)}/(2\pi)^2\alpha' = 2m(dx^4 \wedge dx^6 + dx^5 \wedge dx^7) \wedge dx^9$$
,
 $H_{(3)}/(2\pi)^2\alpha' = 2n(dx^4 \wedge dx^6 + dx^5 \wedge dx^7) \wedge dx^8$,

we can interpret m ↔ n interchange as S-duality & 90° 89-rotation. Here,

S:
$$\begin{cases} g_{s} & \rightarrow \tilde{g}_{s} = 1/g_{s}, \\ R_{m}/\alpha' & \rightarrow (R_{m}/\alpha') = \frac{1}{g_{s}}(R_{m}/\alpha'). \end{cases}$$

 We can map this duality to the IIA CY3 dual description. It acts on the Kähler modulus h as

$$\frac{\overline{m}h}{(2\pi)^2\alpha'} \longrightarrow \left(\frac{\overline{m}h}{(2\pi)^2\alpha'}\right) = \frac{(2\pi)^2\alpha'}{\overline{m}h}.$$

(I.e., it inverts the T4 volume.)

· So, m on duality is

$$\begin{array}{ccc}
T^6/\mathbb{Z}_2 & & CY_3 \\
S-\text{duality} & & & \\
\otimes R_{89}(90^\circ) & & & \\
\end{array}$$

$$\begin{array}{c}
CY_3 \\
T-\text{duality of} \\
\text{entire } T^4 \text{ fiber.}
\end{array}$$

First place to look :

 Kreuzer and Skarke have tabulated all 473, 800, 766 reflexive polyhedra in 4D.

So, all hypersurface CY3s known, and $\{\pi_1 = 0\}$ all connected through flops + conifolds.

· Look for

$$(h^{1,1}, h^{2,1}) = (2,2), (6,6), (10,10), (14,14), w. m = 1.$$

Find three (14,14) candidates ...

but do not appear to be abelian surface fibrations.

⇒ CY3 duals of T6/Z2 do not seem to be in the known web, but could still be in other large webs that remain to be explored (or, could be isolated).

Another guess:

· Appearance of T2 moduli

T in 4,5 and 6,7 directions in 8,10 directions

Suggests

$$X_6 = \left(E_{\tau} \times E_{\tau} \times E_{\tau} \right) / \Gamma$$
.

elliptic curves discrete group

- * For $\Gamma = D_8$, obtain $(h^{1/1}, h^{2/1}) = (2,2) /$ but wrong c2(X6) and T1(X6).
- · Still an open problem to identify explicit constructions of the CY3 duals.

- · Could ask about flops and extremal transitions. (Web or isolated?)
- Rational curves = CY3 ⇒ WS instantons
 ⇔ dual T6/Z instantons.
- This would tell us about instantons in T⁶/Z₂ that are not currently known.

(E.g., IP' section of T⁴ fibration ⇒ D3 instanton on T⁴ c T⁰/Z2.)

Potentially useful for model building on chiral orientifolds of To/r.

- Most (all?) CY3 other than free quotients of T6 have rational curves.

Our CY3 are not free quotients of T^6 since $C_2 \neq 0$.

 So, either learn about new CY3 w.o. rational curves or gain prediction for instanton corrections to T⁶/Z₂. We have seen that

CY3 duals of T6/Z2 with N=2 flux have:

- $(h^{1,1}, h^{2,1}) = (2,2)^3, (6,6)^2, (10,10)^2, (14,14)^1$
- Degeneracies distinguished by (m,n)4mn = 16-M, $h^{1,1} = h^{2,1} = M+2$
- · Zm x Zm winding, Zn x Zn isometry
- · Intersection numbers

$$H^2 \cdot S = \frac{2mn}{(\gcd(m,n))^2}$$
, $H \cdot I \cdot J = -\frac{m}{\gcd(m,n)} \delta_{IJ}$

· Abelian surface (T+) fibrations over P1.

We identified m on interchange with

- · S-duality @ R89 (90°) T6/Z2
- · T-duality of entire T+ fiber CY3.

Would like to identify these CY3 in terms of concrete algebro-geometric constructions.

- · Could then ask about flops and extremal transitions (i.e., web).
- · Rational curves / ws instanton ?

This would teach us about instantons in T⁶/Z₂ or new CY₃ without rational curves.

Finally,

 To what exent are there standard (fluxless) duals of N=1 flux compactifications?