Landscape Studies

Frederik Denef

March 25, 2005

FD, M. Douglas, hep-th/0404116 FD, M. Douglas, hep-th/0411183, B. Acharya, FD, R. Valandro, hep-th/0502060, FD, M. Douglas, B. Florea, A. Grassi, S. Kachru, hep-th/0503124.

Outline

How to study the Landscape?

The String Theory Landscape What can we do? Power and pitfalls of statistics

Explicit construction of vacua

The model Moduli stabilization

Statistics of supergravity ensembles

Toy model
IIB flux and more general models
Results

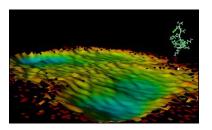
How to study the landscape?

The String Theory Landscape

Vague definition: configuration space of string theory, with some sort of effective potential determining vacua.

One thing is clear: landscape is huge and complex, with huge number of vacua.

The String Theory Landscape



Vaguely similar to energy landscapes in e.g. quantitative biology.

Problems in string theory setting:

- proper degrees of freedom?
- dynamics?
- initial conditions?
- probability distributions?

What can we do?

Apart from trying to solve these deep problems, at least two things:

- 1. Explicit construction of semi-realistic vacua:
 - ightarrow no massless moduli, cosmological constant \ll KK scale
- 2. Statistics of vacua: how are vacua distributed over parameter space?
 - → number distributions!

Questions in construction program

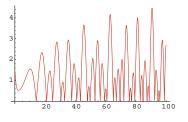
What kinds of vacua exist in string theory?

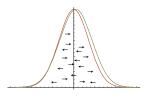
- Standard model spectrum?
- Susy breaking mechanisms?
- Mechanism to stabilize moduli?
 - KKLT scenario most promising for stabilization in controlled regime, with cc ≪ KK scale
 - but: turns out to impose relatively strong topological constraints
 - but II: computational complexity
 - simple explicit example?

Questions in statistics program

- ► Guidance for model building? What is possible in given class of models?
- ➤ Statistical analysis to exclude properties of vacua (in given ensemble)? e.g. large volume
- ► How fine is the discretuum of parameters? Sufficiently fine to accommodate small cc? Sufficiently sparse to be distinguishable?
- ▶ Notion of naturalness in string theory? For example, given landscape, is it still reasonable to assume low energy susy because otherwise Higgs mass must be fine-tuned? What if low energy susy needs even more fine-tuning?
 - → Landscape + environmental selection as alternative notion of naturalness?

Power of statistics





- ▶ Counting often easier than constructing. Plot: $|\zeta(z)|$ at Re $z = \frac{1}{2}$. Number of nonreal zeros ζ with |Im z| < L is $\sim L \log L$.
- ▶ Distributions more robust than individual solutions.

Naive statistics can be misleading

- ▶ Naive argument for distribution susy breaking scales:
 - $ightharpoonup F_i \equiv D_i W$ uniformly and independently distributed
 - $ightharpoonup \Rightarrow \mathcal{N}_{\mathsf{vac}}(|F| < F_*) \sim \int_{|F| < F_*} d^{2n}F \sim F_*^{2n}$
 - ▶ ⇒ Low scale breaking strongly suppressed.
- ▶ It sounds equally reasonable that also W and the fermion mass matrix $M_{ij} \equiv D_i D_j W$ are uniformly and independently distributed.
- ▶ Cannot be all right: (W, F, M) not independent but related by V' = 0 condition:

$$M_{ij}\bar{F}^j=2\bar{W}F_i$$

Explicit construction of vacua

An explicit KKLT example

Problem: find 4d string compactification with large volume, no massless moduli, and $\mathcal{N}=1$ unbroken susy.

KKLT: IIB with flux + nonperturbative effects:

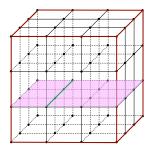
$$W = W_{\text{flux}}(\text{dilaton}, \text{complex}) + W_{\text{np}}(\text{kahler})$$

→ can fix all moduli in principle.

Examples?? \rightarrow plausibly many, but technically difficult to construct explicitly. [DDF]

Found simple one: \mathbb{Z}_2 orientifold of resolved $T^6/\mathbb{Z}_2 \times \mathbb{Z}_2$. acting as (+, -, -), (-, +, -), (-, -, +)

Geometry and moduli

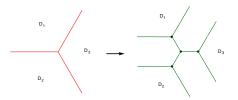


Massless content (classically and without flux):

- ▶ 3 complex structure moduli + dilaton
- ▶ 3 areas $+ 3 \times 16 = 48$ blowup modes = 51 Kähler moduli
- ▶ $3 \times 4 = 12$ O7 planes, with 4 coincident D7 branes on top \rightarrow $SO(8)^{12}$ gauge theory. No massless brane matter fields.

Absence of massless charged matter

Local model for resolution: $\mathbb{C}^3/\mathbb{Z}_2 \times \mathbb{Z}_2$



SO(8) divisors $D_i: z_i = 0$.

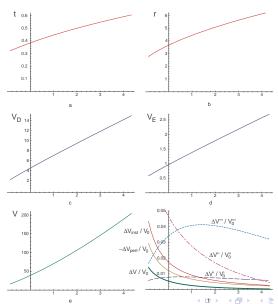
- ▶ After blowing up, *D_i* no longer intersect.
 - ⇒ No massless bifundamentals
- ▶ Global topology D_i before blowup: $T^4/\mathbb{Z}_2 \times \mathbb{Z}_2 = \mathbb{P}^1 \times \mathbb{P}^1$. Topology D_i preserved by blowup, so $h^{2,0} = 0$
 - ⇒ No massless adjoints

Fixing the moduli

(i.e. finding isolated solutions of DW = 0)

- Complex structure moduli (3) and dilaton:
 - Fixed in standard way by 3-form fluxes.
 - ▶ Saturate D3 tadpole L = 28 (\Rightarrow no mobile D3-branes)
- Käher moduli (51)
 - Need nonperturbative effects to produce W(kahler): gaugino condensation in effective SYM theories, and/or Euclidean D3-instantons.
 - ▶ No matter \Rightarrow gaugino condensation in each SO(8)
 - Exceptional divisors from blowing up orbifold fixed lines are rigid (more precisely M-theory M5 lifts have $h^{0,i}=0$) + flux free \Rightarrow 48 contributing D3-instantons
 - Together sufficient to stabilize all moduli, at moderately large radii.
 - ► Known corrections small (1 % level)

Numerical results



Statistics of supergravity ensembles

Statistics toy model: IIB on rigid Calabi-Yau

► Turning on RR-flux F and NSNS-flux H induces superpotential

$$W(\tau) = (f_1 + if_2) + (h_1 + ih_2)\tau$$

where $\tau = 1/g_s + iC_0$ is dilaton-axion, and $f_i, h_i \in \mathbb{Z}$.

D3 tadpole cancellation requires

$$L \equiv f_1 h_2 - h_1 f_2 \leq L_*,$$

where in more realistic examples L_* is minus D3-charge induced by O3, O7, D7,

 \triangleright Vacua = solutions τ in fundamental domain of

$$D_{\tau}W = 0 \Leftrightarrow \tau = -\frac{f_1 - if_2}{h_1 - ih_2}$$

► Exact enumeration possible, e.g. $N_{vac}(L_* = 150) = 37208$.

Distribution of dilaton-axion values

Continuous approximation

Number of vacua with $L \equiv f_1 h_2 - h_1 f_2 \le L_*$ in region \mathcal{R} is

$$\begin{split} \textit{N}_{\textit{vac}}(\mathcal{R}) &= \sum_{\textit{f},\textit{h}:\textit{L} \leq \textit{L}_*} \int_{\mathcal{R}} \textit{d}^2 \tau \, \textit{g} \, \, \delta^2(\textit{DW}) \, |\det \textit{D}^2 \textit{W}| \\ &\approx \int_{\mathcal{R}} \textit{d}^2 \tau \, \textit{g} \, \int_{\textit{L} \leq \textit{L}_*} \textit{d}^2 \textit{f} \, \, \textit{d}^2 \textit{h} \, \delta^2(\textit{DW}) \, |\det \textit{D}^2 \textit{W}| \end{split}$$

At fixed τ : linear change of variables:

$$(f,h) \in \mathbb{R}^4 \to (W \equiv W(\tau), F \equiv DW(\tau)) \in \mathbb{C}^2.$$

Then $L = |W|^2 - |F|^2$, Jac = 4, and det $D^2W = |W|^2$. So approx. number of vacua is:

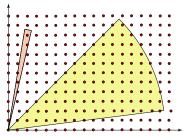
$$\mathcal{N}_{vac}(\mathcal{R}) = 4 \int d^2 \tau \, g \, \int_{|W|^2 - |F|^2 \le L_*} d^2 W \, d^2 F \, \delta^2(F) |W|^2$$
$$= 2\pi L_*^2 \int_{\mathcal{R}} d^2 \tau \, g$$

Remarks

- ► Total $\mathcal{N}_{vac} = \frac{\pi^2 L_*^2}{6}$. For our example $L_* = 150$, $\mathcal{N}_{vac} \approx 37011$, within 0.5% of exact result $N_{vac} = 37208$.
- Distribution of string coupling constants is uniform:

$$\mathcal{N}_{vac}(g_s < g_*) \sim \int_{ au_2 = 1/g_*}^{\infty} rac{d au_2}{ au_2^2} \sim g_*$$

▶ Nature of approximation: counting lattice points in flux space by computing volume:



More general ensembles

Compactification includes discrete data \vec{N} such as fluxes, brane charges, ... \Rightarrow defines ensemble of effective 4d supergravity Lagrangians $\{\mathcal{L}_{\vec{N}}\}$ with potentials

$$V_{\vec{N}}(t) = |DW_{\vec{N}}|^2 - 3|W_{\vec{N}}|^2$$

on moduli space \mathcal{M} .

Example

IIB flux compactifications: $W_{\vec{N}}(t) = \vec{N} \cdot \vec{\Pi}(t)$

Number of metastable vacua:

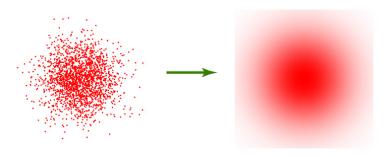
$$N_{vac} = \sum_{ec{N}} \int_{\mathcal{M}} d^{2m}t \, \delta^{2m}(V') \, |\det V''| \, \Theta(V'')$$

Change of variables

Many physical properties can be expressed in terms of

$$W \equiv W(t), \quad F_A \equiv D_A W, \quad M_{AB} \equiv D_A D_B W, \quad Y_{ABC} \equiv D_A D_B D_C W$$

At any fixed t, varying \vec{N} will define a large discrete set in (W, F, M, Y)-space. The distribution of these points is given by some measure $d\mu_0[W, F, M, Y] \rightarrow$ continuous approximation



IIB flux case

W linear in $\vec{N} \Rightarrow$ distr. uniform and supported on linear subspace:

$$d\mu_0[W, F, M, Y] = 4^m d^2 W d^{2m} F_A d^{2m-2} M_{0I} \cdot \delta(\cdots).$$

Here 0 = dilaton, I = complex structure indices, and $\delta(\cdots)$ imposes:

the linear relations

$$M_{IJ} = \mathcal{F}_{IJK}(t)\bar{M}^{0K}, \qquad Y_{ABC} = \cdots$$

The $\mathcal{F}_{IJK}(t) = \partial_I \partial_J \partial_K \mathcal{F}$ ar the "Yukawa couplings" defining the special geometry of the CY complex structure moduli space.

▶ the tadpole constraint $L = |W|^2 - |F_A|^2 + |M_{0I}|^2 \le L_*$.

Vacuum number density

Combining the a priori measure $d\mu_0$ with the constraint V'=0 gives

$$\mathcal{N}_{ extsf{vac}} = \int d\mu [t,W,F,M,Y]$$

where

$$d\mu[t, W, F, M, Y] = d^{2m}t d\mu_0[W, F, M, Y] \cdot \delta^{2m}(V') | \det V''| \Theta(V'').$$

Happily, V' and V'' are easily expressed in terms of W, F, M, Y:

$$\begin{array}{rcl} \partial_A V &=& M_{AB} \bar{F}^B - 2 \bar{W} F_A \\ D_A \partial_B V &=& -\bar{W} M_{AB} + Y_{ABC} \bar{F}^K \\ \bar{D}_A \partial_B V &=& \bar{M}_{AC} M_{BD} - 2 \delta_{AB} |W|^2 + R_{\bar{A}B\bar{C}D} F^C \bar{F}^D + \delta_{AB} |F|^2 - \bar{F}_A F_B. \end{array}$$

 \Rightarrow problem reduced to finding $d\mu_0$ and doing finite dim. integral!

Some results for supersymmetric IIB flux vacua

Number of flux vacua in region \mathcal{R} of moduli space

$$\mathcal{N}_{\mathcal{R}}(L \leq L_*) pprox rac{(2\pi L_*)^{b_3}}{b_3!} \int_{\mathcal{R}} rac{1}{\pi^m} \det(R + \omega \mathbf{1})$$

▶ C.c. $\Lambda = -3|W|^2$ uniformly distributed for $|\Lambda| \ll M_p^4$:

$$d\mathcal{N}[\Lambda] \sim d\Lambda$$

Large volumes strongly suppressed:

$$d\mathcal{N}[V] \sim e^{-cV^{2/3}} d(V^{2/3})$$

Vacua cluster near conifold degenerations:

$$d\mathcal{N}[|t|] \sim d \frac{1}{\log|t|}$$

→ dual gauge theory scale hierarchy

Some results for nonsupersymmetric IIB flux vacua

- ▶ F-breaking vacua, $F = M_{susy}^2 \ll M_p^2$:
 - 1. generic negative Λ :

$$d\mathcal{N}[F,\Lambda] \sim dF d\Lambda$$

2. $\Lambda \sim 0$ or $\Lambda > 0$:

$$d\mathcal{N}[F,\Lambda,t] \sim F^5 dF d\Lambda$$

- \rightarrow low breaking scale disfavored (but much less than naive guess dF^{2n})
- ▶ RS-type "D-breaking" vacua (anti-D3 at bottom of warped AdS throat near conifold degeneration), $M_{susy}^2 \sim |t|^{\alpha} \ll M_p^2$

$$d\mathcal{N}[M_s^2, \Lambda] \sim d \frac{1}{\log M_{susy}^2} d\Lambda$$

→ low breaking scale favored

Some results for M-theory G_2 flux vacua

lacktriangle Number of flux vacua in region ${\mathcal R}$ of moduli space

$$\mathcal{N}_{\mathcal{R}} \sim c_2^{b_3} \int_{\mathcal{R}} \det g$$

Large volumes strongly suppressed:

$$d\mathcal{N}[V] \sim (kc_2)^{b_3} dV^{-3b_3/7} \quad \Rightarrow V < (kc_2)^{7/3}$$

► Small cc's strongly suppressed because

$$\Lambda \sim 1/V^3$$

 Small F-breaking susy breaking scales strongly suppressed because

$$M_{susv}^2 \sim 1/V^{3/2}$$

Reason large hierarchies are suppressed: only as many fluxes as moduli \Rightarrow all scales set by V, no further discrete tuning possible once moduli are fixed.

Conclusions

- Distribution of susy / nonsusy vacua over moduli space roughly uniform for all flux compactifications studied thus far, except near singularities.
- Large volume suppression and upper bound on volume is universal feature.
- ▶ Once volume (KK scale) fixed, IIB still allows other scales such as Λ and M_{susy} to be (discretely) tuned much smaller, while G_2 does not. Effective scanning of scale hierarchies needs more fluxes than moduli.
- ▶ More "fluxes" in *G*² possible? Yes, but correspond to geometric discrete data away from special holonomy.
- ▶ Universal for F-breaking by flux potential at small or positive cc: low energy susy numerically disfavored (even when taking into account Higgs mass tuning).

Toy model
IIB flux and more general models
Results

To do

- more general ensembles
- study observable sector
- establish existence of more vacua with stabilized moduli
- hypothesis for probabilities