A Heterotic Standard Model

Volker Braun, Yang-Hui He, Burt A. Ovrut, and Tony Pantev

vbraun@physics.upenn.edu

Math/Physics Research Group, University of Pennsylvania

Burt's talk next week
hep-th/0410055: Elliptic Calabi-Yau Threefolds with $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ Wilson Lines
hep-th/0501070: A Heterotic Standard Model
hep-th/0502155: A Standard Model from the $E_{8} \times E_{8}$ Heterotic Superstring
hep-th/0504xxx: Standard-Model Vacua in Heterotic String Theory

Table of Contents

e Introduction
e Group Theory
e Calabi-Yau Manifolds

- Vector Bundles
e Low Energy Spectrum
e Conclusions

Introduction

e Geometric compactification of the $E_{8} \times E_{8}$ heterotic string.

Introduction

e Geometric compactification of the $E_{8} \times E_{8}$ heterotic string.
e $d=4, \mathcal{N}=1 \quad \Rightarrow$ stable background.

Introduction

e Geometric compactification of the $E_{8} \times E_{8}$ heterotic string.
e $d=4, \mathcal{N}=1$
\Rightarrow stable background.
e $S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y}$.

Introduction

e Geometric compactification of the $E_{8} \times E_{8}$ heterotic string.
e $d=4, \mathcal{N}=1$ \Rightarrow stable background.

e $S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y} \times U(1)_{B-L}$
\Rightarrow proton decay suppressed.

Introduction

e Geometric compactification of the $E_{8} \times E_{8}$ heterotic string.
e $d=4, \mathcal{N}=1$ \Rightarrow stable background.

e $S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y} \times U(1)_{B-L}$
\Rightarrow proton decay suppressed.
e No exotic matter.

Introduction

e Geometric compactification of the $E_{8} \times E_{8}$ heterotic string.
e $d=4, \mathcal{N}=1$
\Rightarrow stable background.

e $S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y} \times U(1)_{B-L}$ \Rightarrow proton decay suppressed.
e No exotic matter.
e All of the ordinary matter fields (including right-handed Neutrino).

Table of Contents

e Introduction
e Group Theory
e An Organizational Principle
e Wilson Line Breaking
e More Group Theory
e Wish List
e Calabi-Yau Manifolds
e Vector Bundles

- Low Energy Spectrum
e Conclusions

An Organizational Principle

Ancient Lore: $\operatorname{Spin}(10)$ GUT with $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ Wilson lines "works":
$\underline{16}$ of $\operatorname{Spin}(10)$: Breaks into one family of quarks and leptons including a right-handed Neutrino.
$\overline{\overline{16}}$ of Spin(10): Anti-family.
$\underline{10}=\underline{\overline{10}}$ of $\operatorname{Spin}(10)$: Higgs and color triplets.

An Organizational Principle

Ancient Lore: $\operatorname{Spin}(10)$ GUT with $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ Wilson lines "works":
$\underline{16}$ of $\operatorname{Spin}(10)$: Breaks into one family of quarks and leptons including a right-handed Neutrino.
$\overline{16}$ of $\operatorname{Spin}(10)$: Anti-family.
$\underline{10}=\underline{\overline{10}}$ of $\operatorname{Spin}(10)$: Higgs and color triplets.
However, we do not care about GUTs:
Compactification scale ~ GUT scale
... but nice way to package representations.

Wilson Line Breaking

$$
\operatorname{Spin}(10) \supset S U(3) \times S U(2) \times U(1) \times U(1) \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}
$$

$\left\{\begin{array}{c}\text { Standard Model } \\ \text { gauge group }\end{array}\right\} \times U(1)_{B-L} \times\{$ Wilson lines $\}$
$\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ is smallest Wilson line possible.

Wilson Line Breaking

$\operatorname{Spin}(10) \supset S U(3) \times S U(2) \times U(1) \times U(1) \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}$

$$
\begin{aligned}
\underline{\mathbf{1 6}}= & \chi_{1}^{2} \chi_{2}(\underline{\mathbf{3}}, \underline{\mathbf{2}}, 1,1) \oplus \chi_{1}^{2}(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 6,3) \oplus \\
& \oplus \chi_{1}^{2} \chi_{2}^{2}(\underline{\overline{\mathbf{3}}}, \underline{\mathbf{1}},-4,-1) \oplus \chi_{2}^{2}(\underline{\mathbf{3}}, \underline{\mathbf{1}}, 2,-1) \oplus \\
& \oplus(\underline{\mathbf{1}}, \underline{\overline{\mathbf{2}}},-3,-3) \oplus \chi_{1}(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0,3) \\
\underline{\mathbf{1 0}}= & \chi_{1}(\underline{1}, \underline{\mathbf{2}}, 3,0) \oplus \chi_{1} \chi_{2}(\underline{\mathbf{3}}, \underline{\mathbf{1}},-2,-2) \oplus \\
& \oplus \chi_{1}^{2}(\underline{\mathbf{1}}, \underline{\mathbf{2}},-3,0) \oplus \chi_{1}^{2} \chi_{2}^{2}(\underline{\mathbf{3}}, \underline{\mathbf{1}}, 2,2)
\end{aligned}
$$

Wilson Line Breaking

$\operatorname{Spin}(10) \supset S U(3) \times S U(2) \times U(1) \times U(1) \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}$

$$
\begin{aligned}
\underline{\mathbf{1 6}}= & \chi_{1}^{2} \chi_{2}(\underline{\mathbf{3}}, \underline{\mathbf{2}}, 1,1) \oplus \chi_{1}^{2}(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 6,3) \oplus \\
& \oplus \chi_{1}^{2} \chi_{2}^{2}(\underline{\mathbf{3}}, \underline{\mathbf{1}},-4,-1) \oplus \chi_{2}^{2}(\underline{\mathbf{3}}, \underline{\mathbf{1}}, 2,-1) \oplus \\
& \oplus(\underline{\mathbf{1}}, \underline{\overline{2}},-3,-3) \oplus \chi_{1}(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0,3) \\
\underline{\mathbf{1 0}}= & \chi_{1}(\underline{\mathbf{1}}, \underline{\mathbf{2}}, 3,0) \oplus \chi_{1} \chi_{2}(\underline{\mathbf{3}}, \underline{\mathbf{1}},-2,-2) \oplus \\
& \oplus \chi_{1}^{2}(\underline{\mathbf{1}}, \underline{\mathbf{2}},-3,0) \oplus \chi_{1}^{2} \chi_{2}^{2}(\underline{\overline{\mathbf{3}}},, 2,2) \\
& \text { Right-handed Neutrino }
\end{aligned}
$$

More Group Theory

$$
G=\mathbb{Z}_{3} \times \mathbb{Z}_{3}=G_{1} \times G_{2}
$$

Fix generators g_{1} and g_{2}.
Characters ($=1$-d representations): Denote generators by χ_{1} and χ_{2}, where $\left(\omega=e^{\frac{2 \pi i}{3}}\right)$

$$
\begin{array}{ll}
\chi_{1}\left(g_{1}\right)=\omega & \chi_{1}\left(g_{2}\right)=1 \\
\chi_{2}\left(g_{1}\right)=1 & \chi_{2}\left(g_{2}\right)=\omega .
\end{array}
$$

All other characters are products of χ_{1} and χ_{2}.

Yet More Group Theory

Maximal regular subgroup $S U(4) \times \operatorname{Spin}(10) \subset E_{8}$:

The adjoint of E_{8} (fermions in the $E_{8} \times E_{8}$ heterotic string) decomposes as

$$
\underline{248}=(\underline{1}, \underline{45}) \oplus(\underline{15}, \underline{1}) \oplus(\underline{4}, \underline{16}) \oplus(\underline{\overline{4}}, \underline{\overline{16}}) \oplus(\underline{6}, \underline{10})
$$

Wish List

To make use of this group theory, we would like
e A Calabi-Yau threefold X with $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ fundamental group.

Wish List

To make use of this group theory, we would like
e A Calabi-Yau threefold X with $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ fundamental group.
e The Calabi-Yau should be torus fibered.

Wish List

To make use of this group theory, we would like
e A Calabi-Yau threefold X with $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ fundamental group.
e The Calabi-Yau should be torus fibered.
e A $S U(4) \subset E_{8}$ instanton leaves $\operatorname{Spin}(10)$ unbroken, so we want a rank 4 stable holomorphic vector bundle \mathcal{V} on X.

Wish List

To make use of this group theory, we would like
e A Calabi-Yau threefold X with $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ fundamental group.
e The Calabi-Yau should be torus fibered.
e A $S U(4) \subset E_{8}$ instanton leaves $\operatorname{Spin}(10)$ unbroken, so we want a rank 4 stable holomorphic vector bundle \mathcal{V} on X.
e With the "right" cohomology groups (low energy spectrum).

Table of Contents

e Introduction
e Group Theory
e Calabi-Yau Manifolds
e Construction
e Properties
e Group Actions on del Pezzo Surfaces
e Hodge Numbers
a Divisors
e Vector Bundles

- Low Energy Spectrum
e Conclusions

CY Introduction

Calabi-Yau threefold X with
 $$
\pi_{1}(X)=\mathbb{Z}_{3} \times \mathbb{Z}_{3}
$$

CY Introduction

Work with

Have in mind

Simply connected Calabi-Yau threefold \widetilde{X} with free $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ action

Calabi-Yau threefold X with

$$
\pi_{1}(X)=\mathbb{Z}_{3} \times \mathbb{Z}_{3}
$$

CY Introduction

Work with

Simply connected Calabi-Yau threefold \widetilde{X} with free $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ action
elliptically fibered
(torus fibered
with section)

Have in mind

Calabi-Yau threefold

 X with $\pi_{1}(X)=\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ torus fibered(assuming $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ preserves fibration)

Calabi-Yau Construction

Start with two $d P_{9}$ surfaces B_{1} and B_{2}.

Calabi-Yau Construction

Start with two $d P_{9}$ surfaces $\left.\right|_{\mathbb{P}^{1}} ^{B_{1}} \quad \mathbb{P}^{\beta_{1}}$ and ${\underset{\mathbb{P}}{ }}_{\beta_{2}}^{\beta_{2}}$.
Note: $d P_{9}$ are elliptically fibered; Fibers over a generic point $x \in \mathbb{P}^{1}$ are

$$
\beta_{1}^{-1}(x) \simeq T^{2} \subset B_{1}, \quad \beta_{2}^{-1}(x) \simeq T^{2} \subset B_{2} .
$$

Calabi-Yau Construction

Start with two $d P_{9}$ surfaces $\left.\right|_{\mathbb{P}^{1}} ^{B_{1}} \quad \mathbb{P}^{\beta_{1}}$ and ${ }_{\mathbb{P}^{1}}^{B_{2}}$.
Note: $d P_{9}$ are elliptically fibered; Fibers over a generic point $x \in \mathbb{P}^{1}$ are

$$
\beta_{1}^{-1}(x) \simeq T^{2} \subset B_{1}, \quad \beta_{2}^{-1}(x) \simeq T^{2} \subset B_{2} .
$$

The fiber product $B_{1} \times \mathbb{P}^{1} B_{2}$ is the fibration over \mathbb{P}^{1} with fiber

$$
\beta^{-1}(x)=\beta_{1}^{-1}(x) \times \beta_{2}^{-1}(x)
$$

Calabi-Yau Construction

Start with two $d P_{9}$ surfaces $\left.\right|_{\mathbb{P}^{1}} ^{B_{1}} \quad \underset{\mathbb{P}^{1}}{\beta_{1}}$ and ${ }^{\beta_{2}}$.
Note: $d P_{9}$ are elliptically fibered; Fibers over a generic point $x \in \mathbb{P}^{1}$ are

$$
\frac{\beta_{1}^{-1}(x)}{} \simeq T^{2} \subset B_{1},
$$

$$
\beta_{2}^{-1}(x) \simeq T^{2} \subset B_{2} .
$$

The fiber product $B_{1} \times \mathbb{P}^{1} B_{2}$ is the fibration over \mathbb{P}^{1} with fiber

$$
\beta^{-1}(x)=\beta_{1}^{-1}(x) \times \beta_{2}^{-1}(x)
$$

Calabi-Yau Properties

e $\widetilde{X} \xlongequal{\text { def }} B_{1} \times \times_{\mathbb{P}^{1}} B_{2}$ is a simply connected Calabi-Yau threefold, $c_{1}(\widetilde{X})=0$.

Calabi-Yau Properties

e $\widetilde{X} \stackrel{\text { def }}{=} B_{1} \times_{\mathbb{P}^{1}} B_{2}$ is a simply connected Calabi-Yau threefold, $c_{1}(\widetilde{X})=0$.
e Every elliptically fibered Calabi-Yau over a $d P_{9}$ is such a fiber product.

Calabi-Yau Properties

e $\widetilde{X} \stackrel{\text { def }}{=} B_{1} \times_{\mathbb{P}^{1}} B_{2}$ is a simply connected Calabi-Yau threefold, $c_{1}(\widetilde{X})=0$.
e Every elliptically fibered Calabi-Yau over a $d P_{9}$ is such a fiber product.
e $h^{1,1}(\widetilde{X})=19=h^{2,1}(\widetilde{X})$

Calabi-Yau Properties

e $\widetilde{X} \stackrel{\text { def }}{=} B_{1} \times_{\mathbb{P}^{1}} B_{2}$ is a simply connected Calabi-Yau threefold, $c_{1}(\widetilde{X})=0$.
e Every elliptically fibered Calabi-Yau over a $d P_{9}$ is such a fiber product.
e $h^{1,1}(\widetilde{X})=19=h^{2,1}(\widetilde{X})$
e Group actions on B_{1}, B_{2} lift to \widetilde{X} if their action on the common base \mathbb{P}^{1} is identical.

Group Actions on the del Pezzo I

We classified all $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ actions on $d P_{9}$ surfaces. The moduli space looks like this:

A one parameter family

Group Actions on the del Pezzo II

All such $d P_{9}$ surfaces with $G=\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ action give rise to a G action on \widetilde{X}.

Group Actions on the del Pezzo II

All such $d P_{9}$ surfaces with $G=\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ action give rise to a G action on \widetilde{X}.
e The 3 isolated cases never yield a free $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ action.

Group Actions on the del Pezzo II

All such $d P_{9}$ surfaces with $G=\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ action give rise to a G action on \widetilde{X}.
e The 3 isolated cases never yield a free $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ action.
e The one-parameter family and its limits can give a free $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ action on \widetilde{X}.

We only consider this one-parameter family in the following.

Group Action on Cohomology

$G=\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ acts on the cohomology groups of B_{1}, B_{2}, and \tilde{X}.

On $H^{2}\left(B_{i}, \mathbb{Z}\right)=\mathbb{Z}^{10}$ the group generators g_{1}, g_{2} act as

$$
\left(\begin{array}{cccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 3 & -1 & -1 & -1 \\
0 & 1 & 0 & 1 & 0 & 0 & 3 & -1 & -1 & -1 \\
0 & 0 & 0 & 0 & 1 & 0 & -2 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -2 & 0 & 2 & 1 \\
0 & 0 & 0 & -1 & 0 & 1 & -2 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & -1 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -3 & 0 & 3 & 1
\end{array}\right),\left(\begin{array}{cccccccccc}
0 & 0 & 3 & 0 & 0 & 0 & 0 & -1 & 2 & -1 \\
0 & 1 & 3 & 0 & 0 & 1 & 1 & -1 & 2 & -1 \\
0 & 0 & -2 & 0 & 0 & 0 & 0 & 0 & -1 & 1 \\
0 & 0 & -2 & 0 & 0 & -1 & 0 & 1 & -2 & 1 \\
0 & 0 & -2 & 0 & 0 & 0 & -1 & 1 & -1 & 1 \\
0 & 0 & -1 & 1 & 0 & -1 & 0 & 0 & -1 & 0 \\
0 & 0 & -1 & 0 & 1 & 0 & -1 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & -3 & 0 & 0 & 0 & 0 & 1 & -2 & 2
\end{array}\right)
$$

Similarly, 19×19 matrices for g_{1}, g_{2} on $H^{1,1}(\widetilde{X})=\mathbb{C}^{19}$.

Invariant Cohomology

$G=\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ action free $\Rightarrow H^{p, q}(X)=H^{p, q}(\widetilde{X})^{G}$

$h^{1,1}(X)=3$ dimensional space of divisor classes.

Divisors on the Calabi-Yau I

$$
\begin{aligned}
& \operatorname{dim}_{\mathbb{C}}=3: \\
& \operatorname{dim}_{\mathbb{C}}=2: \\
& \operatorname{dim}_{\mathbb{C}}=1:
\end{aligned}
$$

Divisors on the Calabi-Yau I

$$
\operatorname{dim}_{\mathbb{C}}=3: \quad \operatorname{dim}_{\mathbb{C}}=2: \quad H^{1,1}\left(B_{1}\right)^{G}=\mathbb{C} f_{1} \oplus \mathbb{C} t_{1} \quad H^{1,1}\left(B_{2}\right)^{G}=\mathbb{C} f_{2} \oplus \mathbb{C} t_{2}
$$

Divisors on the Calabi-Yau I

$$
\begin{array}{cc}
H^{1,1}(\widetilde{X})^{G}=\mathbb{C} \pi_{1}^{-1}\left(f_{1}\right)+\mathbb{C} \pi_{1}^{-1}\left(t_{1}\right)+\mathbb{C} \pi_{2}^{-1}\left(f_{2}\right)+\mathbb{C} \pi_{2}^{-1}\left(t_{2}\right) \\
\operatorname{dim}_{\mathbb{C}}=3: \\
\operatorname{dim}_{\mathbb{C}}=2: \\
\operatorname{dim}_{\mathbb{C}}=1 \\
H^{1,1}\left(B_{1}\right)^{G}=\mathbb{C} f_{1} \oplus \mathbb{C} t_{1} & H^{1,1}\left(B_{2}\right)^{G}=\mathbb{C} f_{2} \oplus \mathbb{C} t_{2}
\end{array}
$$

Divisors on the Calabi-Yau II

$$
\begin{aligned}
H^{1,1}(\widetilde{X})^{G} & =\mathbb{C} \pi_{1}^{-1}\left(f_{1}\right)+\mathbb{C} \pi_{1}^{-1}\left(t_{1}\right)+\mathbb{C} \pi_{2}^{-1}\left(f_{2}\right)+\mathbb{C} \pi_{2}^{-1}\left(t_{2}\right) \\
& =\mathbb{C} \phi \oplus \mathbb{C} \tau_{1} \oplus \mathbb{C} \tau_{2}
\end{aligned}
$$

There is one relation:

$$
\begin{gathered}
\pi_{1}^{-1}\left(f_{1}\right)=\left\{\begin{array}{cc}
T^{4} \text { fiber of } & \downarrow \\
& \mathbb{P}^{1}
\end{array}\right\}=\pi_{2}^{-1}\left(f_{2}\right) \stackrel{\text { def }}{=} \phi \\
\pi_{1}^{-1}\left(t_{1}\right) \stackrel{\text { def }}{=} \tau_{1} \quad \pi_{2}^{-1}\left(t_{2}\right) \stackrel{\text { def }}{=} \tau_{2}
\end{gathered}
$$

Table of Contents

e Introduction
e Group Theory
e Calabi-Yau Manifolds
e Vector Bundles
a Line Bundles
e Equivariant Line Bundles
a The Serre Construction
e Equivariant Vector Bundles
e Constructing Vector Bundles
e Our Solution
e Low Energy Spectrum
e Conclusions

Line Bundles

On any variety Y, we have

$$
\{\text { Divisors } D\} / \sim=\left\{\text { Line bundles } \mathcal{O}_{Y}(D)\right\}
$$

Line Bundles

On any variety Y, we have

$$
\{\text { Divisors } D\} / \mathcal{S}=\left\{\text { Line bundles } \mathcal{O}_{Y}(D)\right\}
$$

For $B_{1}, B_{2}, \widetilde{X}$ that is just cohomology class of the divisor in $H^{1,1}$.
Every line bundle is of the form
e $\mathcal{O}_{\tilde{X}}\left(x_{1} \tau_{1}+x_{2} \tau_{2}+x_{3} \phi\right), x_{1}, x_{2}, x_{3} \in \mathbb{Z}$.
e $\mathcal{O}_{B_{i}}\left(y_{1} t_{i}+y_{2} f_{i}\right), y_{1}, y_{2} \in \mathbb{Z}$.

Equivariant Line Bundles I

Line bundles on $X=\widetilde{X} / G$

Equivariant Line Bundles I

Work with
Have in mind

$=\begin{gathered}\text { Line bundles on } \\ X=\widetilde{X} / G\end{gathered}$

Equivariant Line Bundles I

Work with
Have in mind

> | G-equivariant line |
| :---: |
| bundles on \widetilde{X} |

$=\quad \begin{gathered}\text { Line bundles on } \\ X=\widetilde{X} / G\end{gathered}$

An equivariant line bundle is a line bundle \mathcal{L} together with a group action $\gamma: G \times \mathcal{L} \rightarrow \mathcal{L}$:

Equivariant Line Bundles II

e Most line bundles on \widetilde{X} cannot be made equivariant.

Equivariant Line Bundles II

e Most line bundles on \widetilde{X} cannot be made equivariant.
e Only the line bundles $\mathcal{O}_{\tilde{X}}\left(x_{1} \tau_{1}+x_{2} \tau_{2}+x_{3} \phi\right)$, $x_{1}, x_{2}, x_{3} \in \mathbb{Z}$ with $x_{1}+x_{2} \equiv 0 \bmod 3$ allow for a $G=\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ action.

Equivariant Line Bundles II

e Most line bundles on \widetilde{X} cannot be made equivariant.
e Only the line bundles $\mathcal{O}_{\tilde{X}}\left(x_{1} \tau_{1}+x_{2} \tau_{2}+x_{3} \phi\right)$, $x_{1}, x_{2}, x_{3} \in \mathbb{Z}$ with $x_{1}+x_{2} \equiv 0 \bmod 3$ allow for a $G=\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ action.
e In these cases, there is always more than one G action
\Rightarrow Different equivariant line bundles!

Equivariant Structures

Consider the trivial line bundle $\mathcal{O}_{\tilde{X}}=\tilde{X} \times \mathbb{C}$.
e Obvious equivariant action

$$
\gamma_{g}: \widetilde{X} \times \mathbb{C} \rightarrow \widetilde{X} \times \mathbb{C},(p, v) \mapsto(g(p), v)
$$

Equivariant Structures

Consider the trivial line bundle $\mathcal{O}_{\tilde{X}}=\widetilde{X} \times \mathbb{C}$.
e Obvious equivariant action

$$
\gamma_{g}: \widetilde{X} \times \mathbb{C} \rightarrow \widetilde{X} \times \mathbb{C},(p, v) \mapsto(g(p), v)
$$

e Different equivariant action by multiplying with a character

$$
\chi \gamma_{g}: \widetilde{X} \times \mathbb{C} \rightarrow \widetilde{X} \times \mathbb{C},(p, v) \mapsto(g(p), \chi(g) v)
$$

Equivariant Structures

Consider the trivial line bundle $\mathcal{O}_{\tilde{X}}=\tilde{X} \times \mathbb{C}$.
e Obvious equivariant action

$$
\gamma_{g}: \widetilde{X} \times \mathbb{C} \rightarrow \widetilde{X} \times \mathbb{C},(p, v) \mapsto(g(p), v)
$$

e Different equivariant action by multiplying with a character

$$
\chi \gamma_{g}: \widetilde{X} \times \mathbb{C} \rightarrow \widetilde{X} \times \mathbb{C},(p, v) \mapsto(g(p), \chi(g) v)
$$

e We write $\chi \mathcal{O}_{\tilde{X}}$ for this different equivariant line bundle.

The Serre Construction

A way to construct may stable rank 2 vector bundles on a surface (here: B_{1} and B_{2}).
e Take two line bundles $\mathcal{L}_{1}, \mathcal{L}_{2}$.
e An ideal sheaf I (sheaf of functions vanishing at some fixed points).
e Define S as an extension

$$
0 \longrightarrow \mathcal{L}_{1} \longrightarrow \mathcal{S} \longrightarrow \mathcal{L}_{2} \otimes I \longrightarrow 0
$$

e Cayley-Bacharach property \Rightarrow generic extension is a rank 2 vector bundle.

Serre Construction Example

$$
0 \longrightarrow \mathcal{O}_{B_{2}}\left(-2 f_{2}\right) \longrightarrow \mathcal{W} \longrightarrow \mathcal{O}_{B_{2}}\left(2 f_{2}\right) \otimes I_{9} \longrightarrow 0
$$

Serre Construction Example

$$
0 \longrightarrow \mathcal{O}_{B_{2}}\left(-2 f_{2}\right) \longrightarrow \mathcal{W} \longrightarrow \mathcal{O}_{B_{2}}\left(2 f_{2}\right) \otimes I_{9} \longrightarrow 0
$$

e $\mathcal{O}_{B_{2}}\left(-2 f_{2}\right), \mathcal{O}_{B_{2}}\left(2 f_{2}\right)$ line bundles on B_{2}.

Serre Construction Example

$$
0 \longrightarrow \mathcal{O}_{B_{2}}\left(-2 f_{2}\right) \longrightarrow \mathcal{W} \longrightarrow \mathcal{O}_{B_{2}}\left(2 f_{2}\right) \otimes I_{9} \longrightarrow 0
$$

e $\mathcal{O}_{B_{2}}\left(-2 f_{2}\right), \mathcal{O}_{B_{2}}\left(2 f_{2}\right)$ line bundles on B_{2}.
e I_{9} is the ideal sheaf of (certain) nine points.

Serre Construction Example

$$
0 \longrightarrow \mathcal{O}_{B_{2}}\left(-2 f_{2}\right) \longrightarrow \mathcal{W} \longrightarrow \mathcal{O}_{B_{2}}\left(2 f_{2}\right) \otimes I_{9} \longrightarrow 0
$$

e $\mathcal{O}_{B_{2}}\left(-2 f_{2}\right), \mathcal{O}_{B_{2}}\left(2 f_{2}\right)$ line bundles on B_{2}.
e I_{9} is the ideal sheaf of (certain) nine points.
e Has the Cayley-Bacharach property.

Serre Construction Example

$$
0 \longrightarrow \mathcal{O}_{B_{2}}\left(-2 f_{2}\right) \longrightarrow \mathcal{W} \longrightarrow \mathcal{O}_{B_{2}}\left(2 f_{2}\right) \otimes I_{9} \longrightarrow 0
$$

e $\mathcal{O}_{B_{2}}\left(-2 f_{2}\right), \mathcal{O}_{B_{2}}\left(2 f_{2}\right)$ line bundles on B_{2}.
e I_{9} is the ideal sheaf of (certain) nine points.
e Has the Cayley-Bacharach property.
e $\operatorname{Ext}^{1}\left(\mathcal{O}_{B_{2}}\left(2 f_{2}\right) \otimes I_{9}, \mathcal{O}_{B_{2}}\left(-2 f_{2}\right)\right)=\mathbb{C}^{9}$, so there exist extensions.

Equivariant Vector Bundles

Vector bundles on $X=\widetilde{X} / G$

Equivariant Vector Bundles

Work with
G-equivariant vector
bundles on \widetilde{X}

Have in mind
\square

Equivariant Vector Bundles

Work with
Have in mind
G-equivariant vector bundles on \tilde{X}

$$
=\begin{gathered}
\text { Vector bundles on } \\
X=\widetilde{X} / G
\end{gathered}
$$

Problem: Even if \mathcal{E}, \mathcal{F} are equivariant,

$$
0 \longrightarrow \mathcal{E} \longrightarrow \mathcal{V} \longrightarrow \mathcal{F} \longrightarrow 0
$$

Extension is not necessarily equivariant!
Only extensions in $\operatorname{Ext}^{1}(\mathcal{F}, \varepsilon)^{G}$ are equivariant.

Equivariant Example

$$
0 \longrightarrow \mathcal{O}_{B_{2}}\left(-2 f_{2}\right) \longrightarrow \mathcal{W} \longrightarrow \chi_{2} \mathcal{O}_{B_{2}}\left(2 f_{2}\right) \otimes I_{9} \longrightarrow 0
$$

e $\mathcal{O}_{B_{2}}\left(-2 f_{2}\right), \chi_{2} \mathcal{O}_{B_{2}}\left(2 f_{2}\right)$ are equivariant.

Equivariant Example

$$
0 \longrightarrow \mathcal{O}_{B_{2}}\left(-2 f_{2}\right) \longrightarrow \mathcal{W} \longrightarrow \chi_{2} \mathcal{O}_{B_{2}}\left(2 f_{2}\right) \otimes I_{9} \longrightarrow 0
$$

e $\mathcal{O}_{B_{2}}\left(-2 f_{2}\right), \chi_{2} \mathcal{O}_{B_{2}}\left(2 f_{2}\right)$ are equivariant.
e I_{9} is the ideal sheaf of one G orbit.

Equivariant Example

$$
0 \longrightarrow \mathcal{O}_{B_{2}}\left(-2 f_{2}\right) \longrightarrow \mathcal{W} \longrightarrow \chi_{2} \mathcal{O}_{B_{2}}\left(2 f_{2}\right) \otimes I_{9} \longrightarrow 0
$$

e $\mathcal{O}_{B_{2}}\left(-2 f_{2}\right), \chi_{2} \mathcal{O}_{B_{2}}\left(2 f_{2}\right)$ are equivariant.
e I_{9} is the ideal sheaf of one G orbit.
e Has the Cayley-Bacharach property.

Equivariant Example

$$
0 \longrightarrow \mathcal{O}_{B_{2}}\left(-2 f_{2}\right) \longrightarrow \mathcal{W} \longrightarrow \chi_{2} \mathcal{O}_{B_{2}}\left(2 f_{2}\right) \otimes I_{9} \longrightarrow 0
$$

e $\mathcal{O}_{B_{2}}\left(-2 f_{2}\right), \chi_{2} \mathcal{O}_{B_{2}}\left(2 f_{2}\right)$ are equivariant.
e I_{9} is the ideal sheaf of one G orbit.
e Has the Cayley-Bacharach property.
e $\operatorname{Ext}^{1}\left(\chi_{2} \mathcal{O}_{B_{2}}\left(2 f_{2}\right) \otimes I_{9}, \mathcal{O}_{B_{2}}\left(-2 f_{2}\right)\right)=\mathbb{C}^{9}$

Equivariant Example

$$
0 \longrightarrow \mathcal{O}_{B_{2}}\left(-2 f_{2}\right) \longrightarrow \mathcal{W} \longrightarrow \chi_{2} \mathcal{O}_{B_{2}}\left(2 f_{2}\right) \otimes I_{9} \longrightarrow 0
$$

e $\mathcal{O}_{B_{2}}\left(-2 f_{2}\right), \chi_{2} \mathcal{O}_{B_{2}}\left(2 f_{2}\right)$ are equivariant.
e I_{9} is the ideal sheaf of one G orbit.
e Has the Cayley-Bacharach property.
e $\operatorname{Ext}^{1}\left(\chi_{2} \mathcal{O}_{B_{2}}\left(2 f_{2}\right) \otimes I_{9}, \mathcal{O}_{B_{2}}\left(-2 f_{2}\right)\right)=\operatorname{Reg}(G)=$
$1 \oplus \chi_{1} \oplus \chi_{1}^{2} \oplus \chi_{2} \oplus \chi_{1} \chi_{2} \oplus \chi_{1}^{2} \chi_{2} \oplus \chi_{2}^{2} \oplus \chi_{1} \chi_{2}^{2} \oplus \chi_{1}^{2} \chi_{2}^{2}$

Equivariant Example

$$
0 \longrightarrow \mathcal{O}_{B_{2}}\left(-2 f_{2}\right) \longrightarrow \mathcal{W} \longrightarrow \chi_{2} \mathcal{O}_{B_{2}}\left(2 f_{2}\right) \otimes I_{9} \longrightarrow 0
$$

e $\mathcal{O}_{B_{2}}\left(-2 f_{2}\right), \chi_{2} \mathcal{O}_{B_{2}}\left(2 f_{2}\right)$ are equivariant.
e I_{9} is the ideal sheaf of one G orbit.
e Has the Cayley-Bacharach property.
e $\operatorname{Ext}^{1}\left(\chi_{2} \mathcal{O}_{B_{2}}\left(2 f_{2}\right) \otimes I_{9}, \mathcal{O}_{B_{2}}\left(-2 f_{2}\right)\right)=\operatorname{Reg}(G)=$
(1) $\oplus \chi_{1} \oplus \chi_{1}^{2} \oplus \chi_{2} \oplus \chi_{1} \chi_{2} \oplus \chi_{1}^{2} \chi_{2} \oplus \chi_{2}^{2} \oplus \chi_{1} \chi_{2}^{2} \oplus \chi_{1}^{2} \chi_{2}^{2}$
so there exist extensions.

Constructing Vector Bundles

Building blocks:
e Line bundles on \widetilde{X}.
e Rank 2 bundles pulled back from B_{1}, B_{2}.

Constructing Vector Bundles

Building blocks:
e Line bundles on \widetilde{X}.
e Rank 2 bundles pulled back from B_{1}, B_{2}.
Operations:
e Tensor product of bundles.
e Sums of bundles.

Constructing Vector Bundles

Building blocks:
e Line bundles on \widetilde{X}.
e Rank 2 bundles pulled back from B_{1}, B_{2}.
Operations:
e Tensor product of bundles.

e Extensions of bundles.

Our Solution

Define these two rank 2 vector bundles

$$
\begin{aligned}
\mathcal{V}_{1} & \stackrel{\text { def }}{=} \chi_{2} \mathcal{O}_{\tilde{X}}\left(-\tau_{1}+\tau_{2}\right) \oplus \chi_{2} \mathcal{O}_{\tilde{X}}\left(-\tau_{1}+\tau_{2}\right)= \\
& =2 \chi_{2} \mathcal{O}_{\tilde{X}}\left(-\tau_{1}+\tau_{2}\right) \\
\mathcal{V}_{2} & \stackrel{\text { def }}{=} \mathcal{O}_{\tilde{X}}\left(\tau_{1}-\tau_{2}\right) \otimes \pi_{2}^{*}(\mathcal{W})
\end{aligned}
$$

We define the rank 4 bundle \mathcal{v} finally as a generic extension

$$
0 \longrightarrow \mathcal{V}_{1} \longrightarrow \mathcal{V} \longrightarrow \mathcal{V}_{2} \longrightarrow 0
$$

Table of Contents

e Introduction
e Group Theory
e Calabi-Yau Manifolds
e Vector Bundles
e Low Energy Spectrum
e Spectrum
e Cohomology
e Heterotic Anomaly
e Spectral Sequences
e Conclusions

Low Energy Spectrum I

The massless spectrum
$=$ zero modes of $D_{E_{8}}$
$=H^{1}$ cohomology of the adjoint bundle $\varepsilon_{8}^{V / G}$.

Low Energy Spectrum I

The massless spectrum
$=$ zero modes of $D_{E_{8}}$
$=H^{1}$ cohomology of the adjoint bundle $\varepsilon_{8}^{V / G}$.

$$
\begin{aligned}
& H^{1}\left(X, \varepsilon_{8}^{\mathcal{V} / G}\right)= \\
& =H^{1}\left(X, \varepsilon_{8}^{\mathcal{V}} / G\right)
\end{aligned}
$$

Low Energy Spectrum I

The massless spectrum
$=$ zero modes of $D_{E_{8}}$
$=H^{1}$ cohomology of the adjoint bundle $\varepsilon_{8}^{V / G}$.

Work with

$$
H^{1}\left(\widetilde{X}, \varepsilon_{8}^{v}\right)^{G}
$$

Have in mind

$$
\begin{aligned}
& H^{1}\left(X, \varepsilon_{8}^{V / G}\right)= \\
& =H^{1}\left(X, \varepsilon_{8}^{V} / G\right)
\end{aligned}
$$

Low Energy Spectrum II

$$
\begin{aligned}
& \underline{248}=(\underline{1}, \underline{45}) \oplus(\underline{15}, \underline{1}) \oplus(\underline{\mathbf{4}}, \underline{16}) \oplus(\underline{\overline{4}}, \underline{\overline{16}}) \oplus(\underline{\mathbf{6}}, \underline{10}) \\
& \underline{10}=\chi_{1}(\underline{1}, \underline{2}, 3,0) \oplus \chi_{1} \chi_{2}(\underline{3}, \underline{1},-2,-2) \oplus \\
& \oplus \chi_{1}^{2}(\underline{\mathbf{1}}, \underline{\overline{2}},-3,0) \oplus \chi_{1}^{2} \chi_{2}^{2}(\underline{\overline{3}}, \underline{1}, 2,2)
\end{aligned}
$$

Correspondingly, the fermions split as...

Low Energy Spectrum II

$$
\begin{aligned}
\mathcal{E}_{8}^{V}= & \left(\mathcal{O}_{\tilde{X}} \otimes \theta(\underline{\mathbf{4 5}})\right) \oplus(\operatorname{ad}(\mathcal{V}) \otimes \theta(\underline{\mathbf{1}})) \oplus \\
& \oplus(\mathcal{V} \otimes \theta(\underline{\mathbf{1 6}})) \oplus\left(\mathcal{V}^{\vee} \otimes \theta(\underline{\mathbf{1 6}})\right) \oplus\left(\wedge^{2} \mathcal{V} \otimes \theta(\underline{\mathbf{1 0}})\right)
\end{aligned}
$$

where $\theta(\cdots)$ is the trivial bundle.

$$
\begin{aligned}
& \theta(\underline{\mathbf{1} 0})=\left[\chi_{1} \theta(\underline{\mathbf{1}}, \underline{\mathbf{2}}, 3,0)\right] \oplus\left[\chi_{1} \chi_{2} \theta(\underline{\mathbf{3}}, \underline{\mathbf{1}},-2,-2)\right] \oplus \\
& \oplus\left[\chi_{1}^{2} \theta(\underline{\mathbf{1}}, \underline{\overline{\mathbf{2}}},-3,0)\right] \oplus\left[\chi_{1}^{2} \chi_{2}^{2} \theta(\underline{\overline{\mathbf{3}}}, \underline{\mathbf{1}}, 2,2)\right]
\end{aligned}
$$

Low Energy Spectrum III

For example, focus on the fields in the 10:

$$
\begin{aligned}
H^{1}\left(\widetilde{X}, \varepsilon_{8}^{V}\right)^{G} & =(\text { lots of other fields }) \oplus \\
& \oplus\left[\chi_{1} \otimes H^{1}\left(\widetilde{X}, \wedge^{2} \mathcal{\nu}\right)\right]^{G} \otimes(\underline{\mathbf{1}}, \underline{\mathbf{2}}, 3,0) \oplus \\
& \oplus\left[\chi_{1} \chi_{2} \otimes H^{1}\left(\widetilde{X}, \wedge^{2} \mathcal{V}\right)\right]^{G} \otimes(\underline{\mathbf{3}}, \underline{\mathbf{1}},-2,-2) \oplus \\
& \oplus\left[\chi_{1}^{2} \otimes H^{1}\left(\widetilde{X}, \wedge^{2} \mathcal{\nu}\right)\right]^{G} \otimes(\underline{\mathbf{1}}, \underline{\overline{\mathbf{2}}},-3,0) \oplus \\
& \oplus\left[\chi_{1}^{2} \chi_{2}^{2} \otimes H^{1}\left(\widetilde{X}, \wedge^{2} \mathcal{V}\right)\right]^{G} \otimes(\underline{\overline{3}}, \underline{\mathbf{1}}, 2,2)
\end{aligned}
$$

Cohomology I

The necessary cohomology groups for \mathcal{V} are

$$
\begin{aligned}
H^{1}(\widetilde{X}, \nu) & =3 \operatorname{Reg}(G) \\
H^{1}\left(\widetilde{X}, \mathcal{V}^{\vee}\right) & =0 \\
H^{1}\left(\widetilde{X}, \wedge^{2} \nu\right) & =H^{1}\left(\widetilde{X}, \nu_{1} \otimes \mathcal{V}_{2}\right)= \\
& =2 \oplus 2 \chi_{1} \oplus 2 \chi_{2} \oplus 2 \chi_{1}^{2} \oplus 2 \chi_{2}^{2} \oplus \\
& \oplus 2 \chi_{1} \chi_{2}^{2} \oplus 2 \chi_{1}^{2} \chi_{2}
\end{aligned}
$$

Cohomology II

$$
\begin{aligned}
& H^{1}\left(\widetilde{X}, \wedge^{2} \mathcal{V}\right)= \\
& \quad 2 \oplus 2 \chi_{1} \oplus 2 \chi_{2} \oplus 2 \chi_{1}^{2} \oplus 2 \chi_{2}^{2} \oplus 2 \chi_{1} \chi_{2}^{2} \oplus 2 \chi_{1}^{2} \chi_{2}
\end{aligned}
$$

Cohomology II

$$
\begin{aligned}
& H^{1}\left(\widetilde{X}, \wedge^{2} \mathcal{V}\right)= \\
& 2 \oplus 2 \chi_{1} \oplus 2 \chi_{2} \oplus 2 \chi_{1}^{2} \oplus 2 \chi_{2}^{2} \oplus 2 \chi_{1} \chi_{2}^{2} \oplus 2 \chi_{1}^{2} \chi_{2} \\
& \quad 2=\left[\chi_{1} \otimes H^{1}\left(\widetilde{X}, \wedge^{2} \mathcal{V}\right)\right]^{G} \quad \text { up Higgs }
\end{aligned}
$$

Cohomology II

$$
\begin{aligned}
& H^{1}\left(\widetilde{X}, \wedge^{2} \mathcal{V}\right)= \\
& 2 \oplus 2 \chi_{1} \oplus 2 \chi_{2} \oplus 2 \chi_{1}^{2} \oplus 2 \chi_{2}^{2} \oplus 2 \chi_{1} \chi_{2}^{2} \oplus 2 \chi_{1}^{2} \chi_{2} \oplus 0 \chi_{1}^{2} \chi_{2}^{2} \\
& 2=\left[\chi_{1} \otimes H^{1}\left(\widetilde{X}, \wedge^{2} \vee\right)\right]^{G} \\
& 0=\left[\chi_{1} \chi_{2} \otimes H^{1}\left(\widetilde{X}, \wedge^{2} \mathcal{\nu}\right)\right]^{G}
\end{aligned}
$$

Cohomology II

$$
\begin{aligned}
& H^{1}\left(\widetilde{X}, \wedge^{2} \nu\right)= \\
& 2 \oplus 2 \chi_{1} \oplus 2 \chi_{2} \oplus 2 \chi_{1}^{2} \oplus 2 \chi_{2}^{2} \oplus 2 \chi_{1} \chi_{2}^{2} \oplus 2 \chi_{1}^{2} \chi_{2} \\
& 2=\left[\chi_{1} \otimes H^{1}\left(\tilde{X}, \wedge^{2} \mathcal{\nu}\right)\right]^{G} \\
& 0=\left[\chi_{1} \chi_{2} \otimes H^{\wedge}\left(\tilde{X}, \wedge^{2} \mathcal{\nu}\right)\right]^{G} \quad \underline{\mathbf{3}} \\
& 2=\left[\chi_{1}^{2} \otimes H^{1}\left(\widetilde{X}, \wedge^{2} \mathcal{V}\right)\right]^{G} \quad \text { down Higgs }
\end{aligned}
$$

Cohomology II

$$
\left.\begin{array}{l}
H^{1}\left(\widetilde{X}, \wedge^{2} \nu\right)= \\
2 \oplus 2 \chi_{1} \oplus 2 \chi_{2} \oplus 2 \chi_{1}^{2} \oplus 2 \chi_{2}^{2} \oplus 2 \chi_{1} \chi_{2}^{2} \oplus 2 \chi_{1}^{2} \chi_{2} \oplus 0 \chi_{1} \chi_{2} \\
2
\end{array}\right)=\left[\chi_{1} \otimes H^{1}\left(\widetilde{X}, \wedge^{2} \nu\right)\right]^{G} \quad \text { up Higgs } \quad \begin{aligned}
& 0=\left[\chi_{1} \chi_{2} \otimes H^{1}\left(\widetilde{X}, \wedge^{2} \nu\right)\right]^{G} \\
& 2=\left[\chi_{1}^{2} \otimes H^{1}\left(\widetilde{X}, \wedge^{2} \nu\right)\right]^{G} \\
& 0=\left[\chi_{1}^{2} \chi_{2}^{2} \otimes H^{1}\left(\widetilde{X}, \wedge^{2} \nu\right)\right]^{G} \\
& \text { down Higgs }
\end{aligned}
$$

Cohomology II

$$
\begin{aligned}
& H^{1}\left(\widetilde{X}, \wedge^{2} \nu\right)= \\
& 2 \oplus 2 \chi_{1} \oplus 2 \chi_{2} \oplus 2 \chi_{1}^{2} \oplus 2 \chi_{2}^{2} \oplus 2 \chi_{1} \chi_{2}^{2} \oplus 2 \chi_{1}^{2} \chi_{2} \\
& 2=\left[\chi_{1} \otimes H^{1}\left(\tilde{X}, \wedge^{2} \nu\right)\right]^{G} \\
& 0=\left[\chi_{1} \chi_{2} \otimes H^{1}\left(\tilde{X}, \wedge^{2} v\right)\right]^{G} \quad \underline{3} \\
& 2=\left[\chi_{1}^{2} \otimes H^{1}\left(\widetilde{X}, \wedge^{2} \nu\right)\right]^{G} \quad \text { down Higgs } \\
& 0=\left[\chi_{1}^{2} \chi_{2}^{2} \otimes H^{1}\left(\widetilde{X}, \wedge^{2} \mathcal{\nu}\right)\right]^{G} \quad \underline{\overline{3}}
\end{aligned}
$$

Heterotic Anomaly I

So far, we only considered the visible E_{8} bundle!
It turns out that we need a instanton \mathcal{H} in the hidden E_{8} for anomaly cancellation.

$$
c_{2}(T \widetilde{X})-c_{2}(\mathcal{V})-c_{2}(\mathcal{H})=P D(C) \in H^{4}(\widetilde{X}, \mathbb{Z})
$$

where C is the curve wrapped by five-branes.

$$
\begin{aligned}
c_{2}(T \widetilde{X}) & =12\left(\tau_{1}^{2}+\tau_{2}^{2}\right) \\
c_{2}(\mathcal{V}) & =-2 \tau_{1}^{2}+7 \tau_{2}^{2}+4 \tau_{1} \tau_{2}
\end{aligned}
$$

Heterotic Anomaly II

We found a rank 2 bundle with
e no hidden matter whatsoever.
e which requires five branes.

$$
c_{2}(T \widetilde{X})-c_{2}(\mathcal{V})-c_{2}\left(\mathcal{H}_{(1)}\right)=6 \tau_{1}^{2} .
$$

Note: the curve τ_{1}^{2} is just an elliptic fiber,

$$
\tau_{1}^{2}=\pi_{1}^{-1}(\{\mathrm{pt} .\})
$$

Heterotic Anomaly III

We found another (reducible) rank 4 bundle with
e two hidden $\operatorname{Spin}(12)$ multiplets.
e which requires no five branes.

$$
c_{2}(T \widetilde{X})-c_{2}(\mathcal{V})-c_{2}\left(\mathcal{H}_{(2)}\right)=0 .
$$

Spectral Sequences I

How did we compute all these cohomology groups?
Leray spectral sequence for any sheaf \mathcal{F} on $\widetilde{X} \rightarrow B_{2}$:

$$
E_{2}^{p, q}=H^{p}\left(B_{2}, R^{q} \pi_{2 *} \mathcal{F}\right) \quad \Rightarrow \quad H^{p+q}(\tilde{X}, \mathcal{F})
$$

Spectral Sequences I

How did we compute all these cohomology groups?
Leray spectral sequence for any sheaf \mathcal{F} on $\widetilde{X} \rightarrow B_{2}$:

$$
E_{2}^{p, q}=H^{p}\left(B_{2}, R^{q} \pi_{2 *} \mathcal{F}\right) \quad \Rightarrow \quad H^{p+q}(\tilde{X}, \mathcal{F})
$$

$R^{q} \pi_{2 *}$ is just the degree q cohomology along the fiber.

Spectral Sequences I

How did we compute all these cohomology groups?
Leray spectral sequence for any sheaf \mathcal{F} on $\widetilde{X} \rightarrow B_{2}$:

$$
E_{2}^{p, q}=H^{p}\left(B_{2}, R^{q} \pi_{2 *} \mathcal{F}\right) \quad \Rightarrow \quad H^{p+q}(\widetilde{X}, \mathcal{F})
$$

$R^{q} \pi_{2 *}$ is just the degree q cohomology along the fiber.
Think of $E_{2}^{p, q}$ as the "forms with p legs along the base and q legs along the fiber".

Spectral Sequences II

Example: $H^{1}\left(\widetilde{X}, \wedge^{2} \mathcal{V}\right)=H^{1}\left(\widetilde{X}, 2 \chi_{2} \pi_{2}^{*}(\mathcal{W})\right)$

$$
\begin{aligned}
\pi_{2 *}\left(2 \chi_{2} \pi_{2}^{*}(\mathcal{W})\right) & =2 \chi_{2} \mathcal{W} \\
R^{1} \pi_{2 *}\left(2 \chi_{2} \pi_{2}^{*}(\mathcal{W})\right) & =2 \chi_{1} \chi_{2} \mathcal{W} \otimes \mathcal{O}_{B_{2}}\left(-f_{2}\right)
\end{aligned}
$$

Compute $H^{p}\left(B_{1}, \cdots\right)$ by two more Leray SS...

Table of Contents

e Introduction
e Group Theory
e Calabi-Yau Manifolds
e Vector Bundles

- Low Energy Spectrum
e Conclusions
e Important Lessons
e Equivariant Structures
e Summary

Important Lessons

e Discrete symmetries are important

Important Lessons

e Discrete symmetries are important
a Doublet-triplet splitting.

Important Lessons

e Discrete symmetries are important
e Doublet-triplet splitting.
e Moduli reduction, e.g.

$$
h^{1,1}(\widetilde{X})=19 \longrightarrow 3=h^{1,1}(X)
$$

Important Lessons

e Discrete symmetries are important
e Doublet-triplet splitting.
e Moduli reduction, e.g.

$$
h^{1,1}(\widetilde{X})=19 \longrightarrow 3=h^{1,1}(X)
$$

e Not at a special point in moduli space
\Rightarrow no enhanced spectrum.

Important Lessons

e Discrete symmetries are important
e Doublet-triplet splitting.
e Moduli reduction, e.g.

$$
h^{1,1}(\widetilde{X})=19 \longrightarrow 3=h^{1,1}(X)
$$

e Not at a special point in moduli space
\Rightarrow no enhanced spectrum.
e Unique solution?

Important Lessons

e Discrete symmetries are important
e Doublet-triplet splitting.
e Moduli reduction, e.g.

$$
h^{1,1}(\widetilde{X})=19 \longrightarrow 3=h^{1,1}(X)
$$

e Not at a special point in moduli space
\Rightarrow no enhanced spectrum.
e Unique solution?
e Equivariant actions are the key.

Photograph

Equivariant Structures I

Recall our solution:
$0 \longrightarrow \mathcal{V}_{1} \longrightarrow \mathcal{V} \longrightarrow \mathcal{V}_{2} \longrightarrow 0$

$$
\begin{aligned}
& \nu_{1} \stackrel{\text { def }}{=} \chi_{2} \mathcal{O}_{\tilde{X}}\left(-\tau_{1}+\tau_{2}\right) \oplus \chi_{2} \mathcal{O}_{\tilde{X}}\left(-\tau_{1}+\tau_{2}\right) \\
& \nu_{2} \stackrel{\text { def }}{=} \mathcal{O}_{\tilde{X}}\left(\tau_{1}-\tau_{2}\right) \otimes \pi_{2}^{*}(\mathcal{W}) \\
& 0 \longrightarrow \mathcal{O}_{B_{2}}\left(-2 f_{2}\right) \longrightarrow \mathcal{W} \longrightarrow \chi_{2} \mathcal{O}_{B_{2}}\left(2 f_{2}\right) \otimes I_{9} \longrightarrow 0
\end{aligned}
$$

Equivariant Structures I

Recall our solution:
$0 \longrightarrow \mathcal{V}_{1} \longrightarrow \mathcal{V} \longrightarrow \mathcal{V}_{2} \longrightarrow 0$

$$
\begin{aligned}
& \nu_{1} \stackrel{\text { def }}{=} \chi_{2} \mathcal{O}_{\tilde{X}}\left(-\tau_{1}+\tau_{2}\right) \oplus \chi_{2} \mathcal{O}_{\tilde{X}}\left(-\tau_{1}+\tau_{2}\right) \\
& \nu_{2} \stackrel{\text { def }}{=} \mathcal{O}_{\tilde{X}}\left(\tau_{1}-\tau_{2}\right) \otimes \pi_{2}^{*}(\mathcal{W}) \\
0 & \longrightarrow \mathcal{O}_{B_{2}}\left(-2 f_{2}\right) \longrightarrow \mathcal{W} \longrightarrow \chi_{2} \mathcal{O}_{B_{2}}\left(2 f_{2}\right) \otimes I_{9} \longrightarrow 0
\end{aligned}
$$

Equivariant Structures I

Recall our solution:
$0 \longrightarrow \mathcal{V}_{1} \longrightarrow \mathcal{V} \longrightarrow \mathcal{V}_{2} \longrightarrow 0$

$$
\begin{aligned}
& \begin{array}{l}
\mathcal{V}_{1} \stackrel{\text { def }}{=} \chi_{2} \mathcal{O}_{\tilde{X}}\left(-\tau_{1}+\tau_{2}\right) \oplus \chi_{2} \mathcal{O}_{\tilde{X}}\left(-\tau_{1}+\tau_{2}\right) \\
\mathcal{V}_{2} \stackrel{\text { def }}{=} \mathcal{O}_{\tilde{X}}\left(\tau_{1}-\tau_{2}\right) \otimes \pi_{2}^{*}(\mathcal{W}) \\
0 \longrightarrow \mathcal{O}_{B_{2}}\left(-2 f_{2}\right) \longrightarrow \mathcal{W} \longrightarrow \chi_{2} \mathcal{O}_{B_{2}}\left(2 f_{2}\right) \otimes I_{9} \longrightarrow 0
\end{array} \\
& \begin{array}{l}
\text { Without this, } \mathcal{W} \text { is } \\
\text { not a bundle! }
\end{array}
\end{aligned}
$$

Equivariant Structures I

Recall our solution:
$0 \longrightarrow \mathcal{V}_{1} \longrightarrow \mathcal{V} \longrightarrow \mathcal{V}_{2} \longrightarrow 0$
Constraint on characters: $S U(4)$ bundle, not $U(4)$

$$
\Leftrightarrow \wedge^{4} \mathcal{V}=\mathcal{O}_{\tilde{X}}
$$

Without this, \mathcal{W} is not a bundle!

Equivariant Structures II

Different G-action:
$0 \longrightarrow \nu_{1}^{\prime} \longrightarrow \nu^{\prime} \longrightarrow \mathcal{V}_{2}^{\prime} \longrightarrow 0$

$$
\begin{aligned}
& \mathcal{V}_{1}^{\prime} \stackrel{\text { def }}{=} \bigcirc \mathcal{O}_{\tilde{X}}\left(-\tau_{1}+\tau_{2}\right) \oplus \chi_{2}^{2} \mathcal{O}_{\tilde{X}}\left(-\tau_{1}+\tau_{2}\right) \\
& \mathcal{V}_{2}^{\prime} \stackrel{\text { def }}{=} \mathcal{O}_{\tilde{X}}\left(\tau_{1}-\tau_{2}\right) \otimes \pi_{2}^{*}\left(\mathcal{W}^{\prime}\right) \\
0 & \longrightarrow \mathcal{O}_{B_{2}}\left(-2 f_{2}\right) \longrightarrow \mathcal{W}^{\prime} \longrightarrow \chi_{2} \mathcal{O}_{B_{2}}\left(2 f_{2}\right) \otimes I_{9} \longrightarrow 0
\end{aligned}
$$

This is a different equivariant bundle on \widetilde{X}
\Rightarrow a different quotient bundle on X !

Equivariant Structures III

$$
\begin{aligned}
H^{1}\left(\widetilde{X}, \wedge^{2} \nu\right)= & 2 \oplus 2 \chi_{1} \oplus 2 \chi_{2} \oplus 2 \chi_{1}^{2} \oplus 2 \chi_{2}^{2} \oplus \\
& \oplus 2 \chi_{1} \chi_{2}^{2} \oplus 2 \chi_{1}^{2} \chi_{2} \\
H^{1}\left(\widetilde{X}, \wedge^{2} \nu^{\prime}\right)= & 2 \oplus \chi_{1} \oplus \chi_{1}^{2} \oplus 2 \chi_{2} \oplus 2 \chi_{1} \chi_{2} \oplus \\
& \oplus \chi_{1}^{2} \chi_{2} \oplus 2 \chi_{2}^{2} \oplus \chi_{1} \chi_{2}^{2} \oplus 2 \chi_{1}^{2} \chi_{2}^{2}
\end{aligned}
$$

Different spectrum:

Equivariant Structures III

$$
\begin{aligned}
& \qquad \begin{array}{l}
H^{1}\left(\widetilde{X}, \wedge^{2} \mathcal{\nu}\right)=2 \oplus 2 \chi_{1} \oplus 2 \chi_{2} \oplus 2 \chi_{1}^{2} \oplus 2 \chi_{2}^{2} \oplus \\
\\
H^{1}\left(\widetilde{X}, \wedge^{2} \nu^{\prime}\right)=2 \oplus \chi_{1} \chi_{2}^{2} \oplus 2 \chi_{1}^{2} \chi_{2}
\end{array} \\
& \text { Different spectrum: }
\end{aligned}
$$

Equivariant Structures III

$$
\begin{aligned}
& \qquad \begin{array}{l}
H^{1}\left(\tilde{X}, \wedge^{2} \mathcal{V}\right)=2 \oplus 2 \chi_{1} \oplus 2 \chi_{2} \oplus 2 \chi_{1}^{2} \oplus 2 \chi_{2}^{2} \oplus \\
\\
H^{1}\left(\widetilde{X}, \wedge^{2} \mathcal{V}^{\prime}\right)=2 \oplus \chi_{1} \chi_{2}^{2} \oplus 2 \chi_{1}^{2} \chi_{2}
\end{array} \\
& \text { ifferent spectrum: }
\end{aligned}
$$

Spectrum Summary

e 3 families of quarks and leptons.
e Zero anti-families.
e 4 Higgs (twice MSSM).
e Doublets and triplets are completely split, all triplets are projected out.
e Hidden pure E_{7} or $\operatorname{Spin}(12)$ with 2 matter fields.
Within our Ansatz, there is only one solution that is even close to a realistic spectrum.

Future Directions

e Supersymmetry breaking.
e $U(1)_{B-L}$ breaking.
e Yukawa couplings.
e Moduli stabilization.
e Revisit $S U(5)$ with \mathbb{Z}_{2} Wilson line: no $U(1)_{B-L}$.

