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The basic problem

For fixed angles A, find a maximal set of vectors in Cn such that

|〈u, v〉| ∈ A.

well-studied in <n

applications to communications sequences, quantum
computing
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Equiangular lines

Equiangular lines: Vectors v1, . . . , vl in Cn such that

∣∣〈vi , vj〉
∣∣ =

{
1, i = j ;

α, otherwise.
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Mutually unbiased bases

Mutually unbiased bases: Bases B1, . . . , Bb for Cn such that

|〈u, v〉| =


1, u = v ;

0, u 6= v , u, v ∈ Bi ;

α, otherwise.

In C2: (
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Flat vectors

Flat : every entry has the same absolute value.
B1, . . . , Bb are mutually unbiased if and only if

B∗i Bi = I;

B∗i Bj is flat (i 6= j).
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Bounds for EAL’s

If l is the largest number of equiangular lines in Cn,

l ≤ n2.

equality holds for n ∈ {2, 3, 4, 5, 6, 7, 8, 19}.
evidence of equality for all n.

(Delsarte, Goethals, Seidel ’75)
(Hoggar ’98; Zauner ’99; Grassl ’04, Appleby ’04)

(Renes, Blume-Kohout, Scott, Caves ’03)
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Bounds for MUB’s

If b is the largest number of mutually unbiased bases in Cn,

b ≤ n + 1.

for prime powers: equality holds.

for non prime-powers: b ≥ 3.

(Delsarte, Goethals, Seidel ’75)

(Alltop ’80; Wootters & Fields ’89)
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A construction of EAL’s

Theorem (1)

Let D be a difference set in an abelian group G. Then the
characters of G, restricted to D and normalized, are a set of
equiangular lines.

Best possible for flat lines

If n − 1 is a prime power, then n2 − n + 1 EAL’s exist in Cn.
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Example

A difference set in Z7: {0, 1, 3}
Characters of Z7 (with ω7 = 1):

1
1
1
1
1
1
1




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· · ·

Theorem 1 ⇒ 7 equiangular lines in C3.
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Proof of Theorem (1)

If χa and χb are characters of G,

〈χa|D, χb|D〉 =
∑
d∈D

χa(d)χb(d)

=
∑
d∈D

χb−a(d)

:= χb−a(D).
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Proof of Theorem (1)

For any non-trivial character χ,

|χ(D)|2 = χ(D)χ(D)

= χ(D)χ(−D)

= |D|χ(0) + χ(G − {0})
= |D| − 1.
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Relative difference sets

Relative difference set : a set R ⊆ G such that for some
subgroup N,

∆R = G − N.

Semiregular : |R| = |N|, |G| = |R|2.

eg)
G = Z4, R = {0, 1}, N = {0, 2}
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A construction of MUB’s

Theorem (2)

Let R be a semiregular relative difference set in an abelian
group G. Then the characters of G, restricted to R and
normalized, are a set of mutually unbiased bases.

If n is a prime power, there are n + 1 MUB’s in Cn.

All known maximal MUB’s can be constructed this way.
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Beyond difference sets

Theorem (3)

Let Γ be a graph that is

k-regular

bipartite with 2d vertices

an abelian group of automorphisms acts regularly on each
colour class.

Then there is a set of complex lines {v1, . . . , vd} in Ck such that
for any i and j, ∣∣〈vi , vj〉

∣∣ ∈ spec(Γ).
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Difference sets → graphs

Difference set ↔ Incidence structure ↔ Incidence graph
D Dev(D) (P,B)
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Future Work

MUB’s for non-prime powers, EAL’s for n > 8

Bipartite graphs with few eigenvalues

Other proofs of upper bounds
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