# Complex Lines with Restricted Angles

Aidan Roy Chris Godsil

Department of Combinatorics and Optimization
University of Waterloo

Ontario Combinatorics Workshop, 2005



# The basic problem

For fixed angles A, find a maximal set of vectors in  $\mathbb{C}^n$  such that

$$|\langle u, v \rangle| \in A$$
.

- well-studied in  $\Re^n$
- applications to communications sequences, quantum computing

# Equiangular lines

**Equiangular lines:** Vectors  $v_1, \ldots, v_l$  in  $\mathbb{C}^n$  such that

$$\left|\langle v_i, v_j \rangle\right| = \begin{cases} 1, & i = j; \\ \alpha, & \text{otherwise.} \end{cases}$$

In 
$$\mathbb{C}^2$$
 (with  $\omega^3 = 1$ )

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ \sqrt{2} \end{pmatrix}, \quad \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ \sqrt{2}\omega \end{pmatrix}, \quad \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ \sqrt{2}\omega^2 \end{pmatrix}$$



# **Equiangular lines**

**Equiangular lines:** Vectors  $v_1, \ldots, v_l$  in  $\mathbb{C}^n$  such that

$$\left| \langle v_i, v_j \rangle \right| = \begin{cases} 1, & i = j; \\ \alpha, & \text{otherwise.} \end{cases}$$

In 
$$\mathbb{C}^2$$
 (with  $\omega^3 = 1$ ):

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \tfrac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ \sqrt{2} \end{pmatrix}, \quad \tfrac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ \sqrt{2}\omega \end{pmatrix}, \quad \tfrac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ \sqrt{2}\omega^2 \end{pmatrix}$$



# Equiangular lines



# Mutually unbiased bases

**Mutually unbiased bases:** Bases  $B_1, \ldots, B_b$  for  $\mathbb{C}^n$  such that

$$|\langle u, v \rangle| = egin{cases} 1, & u = v; \ 0, & u 
eq v, u, v \in B_i; \ lpha, & ext{otherwise}. \end{cases}$$

In 
$$\mathbb{C}^2$$

$$\left(\begin{array}{cc}1&0\\0&1\end{array}\right),\ \frac{1}{\sqrt{2}}\left(\begin{matrix}1&1\\1&-1\end{matrix}\right),\ \frac{1}{\sqrt{2}}\left(\begin{matrix}1&1\\i&-i\end{matrix}\right)$$

# Mutually unbiased bases

**Mutually unbiased bases:** Bases  $B_1, \ldots, B_b$  for  $\mathbb{C}^n$  such that

$$|\langle u, v \rangle| = egin{cases} 1, & u = v; \ 0, & u 
eq v, u, v \in B_i; \ lpha, & ext{otherwise}. \end{cases}$$

In 
$$\mathbb{C}^2$$
:

$$\left(\begin{array}{cc}1&0\\0&1\end{array}\right),\ \frac{1}{\sqrt{2}}\left(\begin{matrix}1&1\\1&-1\end{matrix}\right),\ \frac{1}{\sqrt{2}}\left(\begin{matrix}1&1\\i&-i\end{matrix}\right)$$



### Flat vectors

**Flat**: every entry has the same absolute value.

 $B_1, \ldots, B_b$  are mutually unbiased if and only if

- $B_i^*B_i = I$ ;
- $B_i^* B_j$  is flat  $(i \neq j)$ .

$$\left(\begin{array}{cc}1&0\\0&1\end{array}\right),\ \frac{1}{\sqrt{2}}\left(\begin{matrix}1&1\\1&-1\end{matrix}\right),\ \frac{1}{\sqrt{2}}\left(\begin{matrix}1&1\\i&-i\end{matrix}\right)$$



### Bounds for EAL's

If *I* is the largest number of equiangular lines in  $\mathbb{C}^n$ ,

$$1 \leq n^2$$
.

- equality holds for  $n \in \{2, 3, 4, 5, 6, 7, 8, 19\}$ .
- evidence of equality for all n.

```
(Delsarte, Goethals, Seidel '75)
(Hoggar '98; Zauner '99; Grassl '04, Appleby '04)
(Renes, Blume-Kohout, Scott, Caves '03)
```



### Bounds for MUB's

If *b* is the largest number of mutually unbiased bases in  $\mathbb{C}^n$ ,

$$b \le n + 1$$
.

- for prime powers: equality holds.
- for non prime-powers:  $b \ge 3$ .

(Delsarte, Goethals, Seidel '75)

(Alltop '80; Wootters & Fields '89)



### A construction of EAL's

#### Theorem (1)

Let D be a difference set in an abelian group G. Then the characters of G, restricted to D and normalized, are a set of equiangular lines.

- Best possible for flat lines
- If n-1 is a prime power, then  $n^2-n+1$  EAL's exist in  $\mathbb{C}^n$ .

### Example

- A difference set in  $\mathbb{Z}_7$ :  $\{0, 1, 3\}$
- Characters of  $\mathbb{Z}_7$  (with  $\omega^7 = 1$ ):

$$\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ \omega \\ \omega^2 \\ \omega^4 \\ \omega^6 \\ \omega^4 \\ \omega^6 \\ \omega^4 \\ \omega^6 \\ \omega^5 \\ \omega^5 \end{pmatrix} \dots$$

• Theorem 1  $\Rightarrow$  7 equiangular lines in  $\mathbb{C}^3$ .

# Proof of Theorem (1)

If  $\chi_a$  and  $\chi_b$  are characters of G,

$$\begin{aligned} \langle \chi_{a}|_{D}, \chi_{b}|_{D} \rangle &= \sum_{d \in D} \overline{\chi_{a}(d)} \chi_{b}(d) \\ &= \sum_{d \in D} \chi_{b-a}(d) \\ &:= \chi_{b-a}(D). \end{aligned}$$

# Proof of Theorem (1)

For any non-trivial character  $\chi$ ,

$$|\chi(D)|^2 = \chi(D)\overline{\chi(D)}$$

$$= \chi(D)\chi(-D)$$

$$= |D|\chi(0) + \chi(G - \{0\})$$

$$= |D| - 1.$$

### Relative difference sets

 Relative difference set: a set R ⊆ G such that for some subgroup N,

$$\Delta R = G - N$$
.

• Semiregular:  $|R| = |N|, |G| = |R|^2$ .

$$G = \mathbb{Z}_4, R = \{0, 1\}, N = \{0, 2\}$$

### Relative difference sets

 Relative difference set: a set R ⊆ G such that for some subgroup N,

$$\Delta R = G - N$$
.

• Semiregular:  $|R| = |N|, |G| = |R|^2$ .

$$G = \mathbb{Z}_4$$
,  $R = \{0, 1\}$ ,  $N = \{0, 2\}$ 

### A construction of MUB's

#### Theorem (2)

Let R be a semiregular relative difference set in an abelian group G. Then the characters of G, restricted to R and normalized, are a set of mutually unbiased bases.

- If *n* is a prime power, there are n + 1 MUB's in  $\mathbb{C}^n$ .
- All known maximal MUB's can be constructed this way.

### Beyond difference sets

#### Theorem (3)

Let  $\Gamma$  be a graph that is

- k-regular
- bipartite with 2d vertices
- an abelian group of automorphisms acts regularly on each colour class.

Then there is a set of complex lines  $\{v_1, \ldots, v_d\}$  in  $\mathbb{C}^k$  such that for any i and j,

$$|\langle v_i, v_j \rangle| \in spec(\Gamma).$$

# Difference sets → graphs



### **Future Work**

- MUB's for non-prime powers, EAL's for n > 8
- Bipartite graphs with few eigenvalues
- Other proofs of upper bounds