# Eigenvalues of some of my Favourite Graphs

Karen Meagher

路路路路路

kmeagher@site.uottawa.ca

University of Ottawa

#### **Eigenvalues of Graphs**

- The adjacency matrix of a graph G on n vertices (labelled  $1, 2, \ldots, n$ ) is an
  - \*  $n \times n$ , 01-matrix denoted A(G)

镕

能能

器

器

器

- ★ 1 in the i, j position if vertices i and j are adjacent
- $\star$  0 if vertices i and j are not adjacent.

#### **Eigenvalues of Graphs**

- The adjacency matrix of a graph G on n vertices (labelled  $1, 2, \ldots, n$ ) is an
  - \*  $n \times n$ , 01-matrix denoted A(G)

镕

船船

路路

- ★ 1 in the i, j position if vertices i and j are adjacent
- $\star$  0 if vertices i and j are not adjacent.
- The eigenvalues of G are the eigenvalues of A(G).

#### **Complete Graph**

The adjacency matrix for the complete graph  $K_5$  is:



The adjacency matrix for the complete graph  $K_5$  is:

$$\begin{pmatrix}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 0
\end{pmatrix}$$

The characteristic polynomial is

器

$$\phi(K_5,\lambda) = (1+\lambda)^4(4-\lambda).$$

# Why Eigenvalues of Graphs?





For any k-regular graph, k is an eigenvalue. The corresponding eigenvector is the all ones vector.

器

器

常 常 常 常 常 常

器

Ratio Bound Let G be a k-regular graph on n vertices with least eigenvalue  $\tau$ . Then

$$\alpha(G) \le \frac{n}{1 - \frac{k}{\tau}}.$$

#### **Partitions**

铭

器

器

★ A set partition of an n-set is a set of disjoint non-empty subsets (called classes) of the n-set whose union is the n-set.



铭

路路路

器 器 器

器

器

器

- ★ A set partition of an n-set is a set of disjoint non-empty subsets (called classes) of the n-set whose union is the n-set.
- $\star$  A partition P is called a k-partition if it contains k non-empty classes, that is |P|=k.

#### **Partitions**

铭

路路路

部部部

器

- ★ A set partition of an n-set is a set of disjoint non-empty subsets (called classes) of the n-set whose union is the n-set.
- **\*** A partition P is called a k-partition if it contains k non-empty classes, that is |P|=k.
- \* A k-partition of n-set P is said to be uniform if every class  $P_i \in P$  has size n/k.

#### **Partitions**

铭

路路路

器

部部部

器

- ★ A set partition of an n-set is a set of disjoint non-empty subsets (called classes) of the n-set whose union is the n-set.
- \* A partition P is called a k-partition if it contains k non-empty classes, that is |P|=k.
- \* A k-partition of n-set P is said to be uniform if every class  $P_i \in P$  has size n/k.

An example of a uniform 3-partition of a 9-set is

$$P = 123|456|789.$$

Let A, B be uniform k-partitions of an n-set,

器

器

器

器

器

$$A = \{A_1, A_2, \dots, A_k\}$$
 and  $B = \{B_1, B_2, \dots, B_k\}$ .

Let A,B be uniform k-partitions of an n-set,

$$A = \{A_1, A_2, \dots, A_k\}$$
 and  $B = \{B_1, B_2, \dots, B_k\}$ .

A and B are qualitatively independent if

器

器

器

器

部

器

$$A_i \cap B_j \neq \emptyset$$
 for all  $i$  and  $j$ .

Let A, B be uniform k-partitions of an n-set,

$$A = \{A_1, A_2, \dots, A_k\}$$
 and  $B = \{B_1, B_2, \dots, B_k\}$ .

A and B are qualitatively independent if

$$A_i \cap B_j \neq \emptyset$$
 for all  $i$  and  $j$ .

Non-Example:

器

器



$$A = \{A_1, A_2, \dots, A_k\}$$
 and  $B = \{B_1, B_2, \dots, B_k\}$ .

 ${\cal A}$  and  ${\cal B}$  are qualitatively independent if

$$A_i \cap B_j \neq \emptyset$$
 for all  $i$  and  $j$ .

Non-Example:

**Example:** 

器

器

器

Uniform Qualitative Independence Graph, UQI(ck,k)

Uniform Qualitative Independence Graph, UQI(ck,k)

 $\star$  positive integers k and c

器

器

器

#### Uniform Qualitative Independence Graph, UQI(ck,k)

 $\star$  positive integers k and c

貂

部部

器

器

器

器

器

 $\star$  vertices are all uniform k-partitions of an ck-set

#### Uniform Qualitative Independence Graph, UQI(ck,k)

 $\star$  positive integers k and c

貂

能能

部部

常 端 端 端

器

器

器

器

- $\star$  vertices are all uniform k-partitions of an ck-set
- vertices are adjacent if the corresponding partitions are qualitatively independent.

#### Uniform Qualitative Independence Graph, UQI(ck,k)

 $\star$  positive integers k and c

貂

器器

部部

常 端 端 端

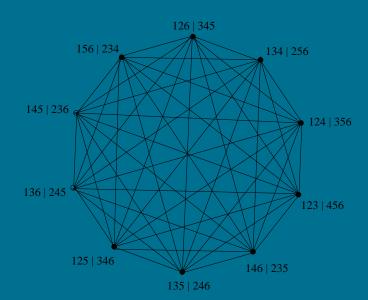
器

器

器

器

- $\star$  vertices are all uniform k-partitions of an ck-set
- vertices are adjacent if the corresponding partitions are qualitatively independent.



#### **Equitable Partitions**

#### **Equitable partition** for a graph G:

镕

能能

路路路

器

器

器

器

器

器

- $\star$  partition  $\pi$  of V(G) with cells  $C_1, C_2, \ldots, C_r$ ,
- \* the number of vertices in  $C_j$  adjacent to some  $v \in C_i$  is a constant  $b_{ij}$ , independent of v.

#### **Equitable Partitions**

#### **Equitable partition** for a graph G:

镕

能能

部部

器

- $\star$  partition  $\pi$  of V(G) with cells  $C_1, C_2, \ldots, C_r$ ,
- \* the number of vertices in  $C_j$  adjacent to some  $v \in C_i$  is a constant  $b_{ij}$ , independent of v.
- Quotient graph of G over  $\pi$ ,  $G/\pi$  is the directed graph with
  - $\star r$  cells  $C_i$  as its vertices
  - $\star$   $b_{ij}$  arcs between the  $i^{th}$  and  $j^{th}$  cells.

# **Theorem on Equitable Partitions**

For a graph G, Aut(G) is the group of automorphism of G.

器

# **Theorem on Equitable Partitions**

For a graph G, Aut(G) is the group of automorphism of G.

器

器

器

器

## If  $S \leq Aut(G)$  then the orbits of S form an equitable partition the vertices of G.

# Theorem on Equitable Partitions

- For a graph G, Aut(G) is the group of automorphism of G.
- If  $S \leq Aut(G)$  then the orbits of S form an equitable partition the vertices of G.
  - **Theorem 1.** If G is a vertex-transitive graph and  $\pi$  is the orbit partitions of some subgroup of Aut(G), then if  $\pi$  has a singleton cell  $\{u\}$ , every eigenvalue of G is an eigenvalue of  $G/\pi$ .

器

器

器

器

器

器

器

器

For a partition  $P \in V(UQI(n,k))$  and  $s \in Sym_n$  let  $P^s$  be the partition with  $s(a) \in (P^s)_i$  if and only if  $a \in P_i$ .

- For a partition  $P \in V(UQI(n,k))$  and  $s \in Sym_n$
- let  $P^s$  be the partition with  $s(a) \in (P^s)_i$  if and only if  $a \in P_i$ .
- & Example.

器

器

器

器

器

器

器

器

**l** If  $P = 12 \mid 345$  and s = (23), then  $P^s = 13 \mid 245$ .

- For a partition  $P \in V(UQI(n, k))$  and  $s \in \overline{Sym_n}$
- let  $P^s$  be the partition with  $s(a) \in (P^s)_i$  if and only if  $a \in P_i$ .
- Example.

器

器

器

器

器

- **If**  $P = 12 \mid 345$  and s = (23), then  $P^s = 13 \mid 245$ .
  - For a given partition P, the fix of P is subgroup

$$fix(P) = \{ s \in Sym_n : P^s = P \}.$$

- For a partition  $P \in V(UQI(n, k))$  and  $s \in \overline{Sym_n}$
- let  $P^s$  be the partition with  $s(a) \in (P^s)_i$  if and only if  $a \in P_i$ .
- Septemble Sep

器

器

- **If**  $P = 12 \mid 345$  and s = (23), then  $P^s = 13 \mid 245$ .
  - For a given partition P, the fix of P is subgroup

$$fix(P) = \{ s \in Sym_n : P^s = P \}.$$

- For any P,
  - $\star$  fix(P) is a subgroup of Aut(UQI(ck, k)),
  - $\star$  the partition P is a singleton cell.

#### The Same but Different

器

器

器

器

器

器

器

器

For  $P,Q \in V(QI(n,k))$  define meet table of P and Q to be the  $k \times k$  array with the i,j entry  $|P_i \cap Q_j|$ .



For  $P,Q\in V(QI(n,k))$  define meet table of P and Q to be the  $k\times k$  array with the i,j entry  $|P_i\cap Q_j|$ .

**%** For 
$$P = 123|456|789$$
 and  $Q = 147|258|369$ ,

器

器

器

器

器

部部

器

$$M_{P,Q} = egin{array}{c|cccc} Q_1 & Q_2 & Q_3 \ \hline P_1 & 1 & 1 & 1 \ P_2 & 1 & 1 & 1 \ \hline P_3 & 1 & 1 & 1 \ \hline \end{array}$$



For  $P,Q\in V(QI(n,k))$  define meet table of P and Q to be the  $k\times k$  array with the i,j entry  $|P_i\cap Q_j|$ .

**%** For 
$$P = 123|456|789$$
 and  $Q = 126|457|389$ ,

器

器

器

器

器

器

器

$$M_{P,Q} = egin{array}{c|cccc} Q_1 & Q_2 & Q_3 \ \hline P_1 & {f 2} & {f 0} & {f 1} \ P_2 & {f 1} & {f 2} & {f 0} \ \hline P_3 & {f 0} & {f 1} & {f 2} \end{array}$$

#### The Same but Different

器

器

器

器

器

器

器

For  $P,Q\in V(QI(n,k))$  define meet table of P and Q to be the  $k\times k$  array with the i,j entry  $|P_i\cap Q_j|$ . For P=123|456|789 and Q=126|457|389,

$$M_{P,Q} = egin{array}{c|cccc} Q_1 & Q_2 & Q_3 \ \hline P_1 & {f 2} & {f 0} & {f 1} \ P_2 & {f 1} & {f 2} & {f 0} \ \hline P_3 & {f 0} & {f 1} & {f 2} \end{array}$$

Two meet tables are isomorphic if there is some permutation of the rows and columns of one array that produces the other array.

#### Why this Partition works

镕

器

器

器

器

器

器

器

**Theorem 2.** Let  $P,Q,R \in V(QI(n,k))$ . Then the meet table for P and Q is isomorphic to the meet table for P and R if and only if there is a  $R \in \operatorname{fix}(P)$  so that  $R \in \operatorname{fix}(P)$  so that



镕

器

器

器

器

器

器

器

器

**Theorem 2.** Let  $P,Q,R \in V(QI(n,k))$ . Then the meet table for P and Q is isomorphic to the meet table for P and R if and only if there is a  $g \in \operatorname{fix}(P)$  so that g(Q) = R.

\* Assume  $M_{P,Q}$  is isomorphic to  $M_{P,R}$ . For permutations  $\sigma, \phi \in Sym_k$ ,  $[M_{P,Q}]_{i,j} = [M_{P,R}]_{\sigma(i),\phi(j)}, \text{ for } i,j \in \{0,1,\ldots,k-1\}.$ 



貂

器

器

器

铅

器

器

器

器

**Theorem 2.** Let  $P,Q,R \in V(QI(n,k))$ . Then the meet table for P and Q is isomorphic to the meet table for P and R if and only if there is a  $R \in \operatorname{fix}(P)$  so that  $R \in \operatorname{fix}(R)$  so that

\* Assume  $M_{P,Q}$  is isomorphic to  $M_{P,R}$ . For permutations  $\sigma, \phi \in Sym_k$ ,

$$[M_{P,Q}]_{i,j} = [M_{P,R}]_{\sigma(i),\phi(j)}$$
, for  $i,j \in \{0,1,\ldots,k-1\}$ .

\* 
$$|P_i \cap Q_j| = |P_{\sigma(i)} \cap R_{\phi(j)}|$$
. Let  $P_i \cap Q_j = \{a_1, \dots, a_m\}$  and  $P_{\sigma(i)} \cap R_{\phi(j)} = \{b_1, \dots, b_m\}$ .

### Why this Partition works

韶

器

器

器

铅

器

器

器

**Theorem 2.** Let  $P,Q,R \in V(QI(n,k))$ . Then the meet table for P and Q is isomorphic to the meet table for P and R if and only if there is a  $g \in \operatorname{fix}(P)$  so that g(Q) = R.

\* Assume  $M_{P,Q}$  is isomorphic to  $M_{P,R}$ . For permutations  $\sigma, \phi \in Sym_k$ ,

$$[M_{P,Q}]_{i,j} = [M_{P,R}]_{\sigma(i),\phi(j)}$$
, for  $i,j \in \{0,1,\ldots,k-1\}$ .

- \*  $|P_i \cap Q_j| = |P_{\sigma(i)} \cap R_{\phi(j)}|$ . Let  $P_i \cap Q_j = \{a_1, \dots, a_m\}$  and  $P_{\sigma(i)} \cap R_{\phi(j)} = \{b_1, \dots, b_m\}$ .
- \* Let  $g_{i,j}$  be the permutation that maps  $a_l$  to  $b_l$  for  $l=1,\ldots m$ .

豁

常 器 器 器

器

 $\star$  Define  $g = \Pi_{0 \leq i, j \leq k-1} g_{i,j}$ .

韶

器

器

- $\star$  Define  $g = \Pi_{0 \leq i, j \leq k-1} g_{i, j}$ .
- \* Then  $g(P_i) = P_{\sigma(i)}$  and  $g(Q_j) = R_{\phi(j)}$ .

铅

器

器

- $\star$  Define  $g = \Pi_{0 \leq i,j \leq k-1} g_{i,j}$ .
- \* Then  $g(P_i) = P_{\sigma(i)}$  and  $g(Q_j) = R_{\phi(j)}$ .
- $\star$  Assume that there is a  $g \in fix(P)$  such that g(Q) = R

部

部部部

器

器

器

器

- $\star$  Define  $g = \Pi_{0 \leq i,j \leq k-1} g_{i,j}$ .
- \* Then  $g(P_i) = P_{\sigma(i)}$  and  $g(Q_j) = R_{\phi(j)}$ .
- $\star$  Assume that there is a  $g \in fix(P)$  such that g(Q) = R
- ★ Define a permutation on the rows  $i \in \{0, ..., k-1\}$  of  $M_{P,Q}$  by  $\sigma(i) = i'$  if and only if  $g(P_i) = P_{i'}$ .

紹

器

器

器

- $\star$  Define  $g = \Pi_{0 \leq i,j \leq k-1} g_{i,j}$ .
- \* Then  $g(P_i) = P_{\sigma(i)}$  and  $g(Q_j) = R_{\phi(j)}$ .
- $\star$  Assume that there is a  $g \in fix(P)$  such that g(Q) = R
- $\star$  Define a permutation on the rows  $i \in \{0, \dots, k-1\}$  of  $M_{P,Q}$  by  $\sigma(i)=i'$  if and only if  $g(P_i)=P_{i'}$ .
- \* Define a permutation  $\phi$  on the columns  $i=0,\ldots,k-1$  of  $M_{P,Q}$  by  $\phi(j)=j'$  if and only if  $g(Q_j)=R_{j'}$ .

- $\star$  Define  $g = \Pi_{0 \leq i,j \leq k-1} g_{i,j}$ .
- \* Then  $g(P_i) = P_{\sigma(i)}$  and  $g(Q_j) = R_{\phi(j)}$ .
- $\star$  Assume that there is a  $g \in fix(P)$  such that g(Q) = R
- $\star$  Define a permutation on the rows  $i \in \{0, \dots, k-1\}$  of  $M_{P,Q}$  by  $\sigma(i)=i'$  if and only if  $g(P_i)=P_{i'}$ .
- \* Define a permutation  $\phi$  on the columns  $i=0,\ldots,k-1$  of  $M_{P,Q}$  by  $\phi(j)=j'$  if and only if  $g(Q_j)=R_{j'}$ .
- \* Thus,

貂

器

器

器

$$[M_{P,Q}]_{\sigma(i),\phi(j)} = [M_{P,R}]_{i,j}$$
, for  $i,j \in \{0,1,\ldots,k-1\}$ 

# Make the Computer do the Work

Write a program to build the adjacent matrix of  $UQI(ck,k)/\pi$ 

# Make the Computer do the Work

Write a program to build the adjacent matrix of  $UQI(ck,k)/\pi$ 

 $\star$  Fix a partition  $P \in UQI(ck, k)$ 

器

器

器

器

器



- Write a program to build the adjacent matrix of  $UQI(ck,k)/\pi$ 
  - $\star$  Fix a partition  $P \in UQI(ck, k)$

器

路路路

器

器

器

器

器

★ For all partitions, build the meet table with P, keep the non-isomorphic tables.



- Write a program to build the adjacent matrix of  $UQI(ck,k)/\pi$ 
  - $\star$  Fix a partition  $P \in UQI(ck, k)$

器

常常常

器

器

- ★ For all partitions, build the meet table with P, keep the non-isomorphic tables.
- $\star$  Store the non-isomorphic tables as a single partition that has the meet table with P



- Write a program to build the adjacent matrix of  $UQI(ck,k)/\pi$ 
  - $\star$  Fix a partition  $P \in UQI(ck, k)$

器

路路路

部部部

- $\star$  For all partitions, build the meet table with P, keep the non-isomorphic tables.
- $\star$  Store the non-isomorphic tables as a single partition that has the meet table with P
- ★ For each non-isomorphic meet table, count the number of partition from each orbit which are qualitatively independent with it.

## **Spectrums of Small UQIs**

| - CATTO                                      |       |                                                                                                   |
|----------------------------------------------|-------|---------------------------------------------------------------------------------------------------|
| 部四                                           | Graph | Eigenvalues and corresponding multiplicities                                                      |
|                                              | 9, 3  | (-4, 2, 8, -12, 36)                                                                               |
| 83                                           |       | (84, 120, 48, 27, 1)                                                                              |
| 25.00                                        | 12, 3 | (0, 8, -12, 18, -27, 48, 108, -252, 1728)                                                         |
|                                              |       | (275,2673,462,616,1408,132,154,-54,1)                                                             |
|                                              | 15, 3 | (4, 8, -10, -22, 29, 34, -76, 218, -226, 284, 1628, -5060, 62000)                                 |
|                                              |       | (1638, 21450, 910, 25025, 32032, 22113, 11583, 1925, 7007, 2002, 350, 90,1)                       |
| Sep .                                        | 18, 3 | (8, 15, 18, -60, 60, -102, -120, 120, 368, 648, -655, -2115, 2370,                                |
|                                              |       | -2115, 2370, 2460, -4140, 24900, -89550, 1876500, $954 \pm 18\sqrt{10209}$ )                      |
|                                              |       | (787644, 678912, 136136, 87516, 331500, 259896, 102102, 219912, 99144,                            |
|                                              |       | 11934, 88128, 22848, 4641, 5508, 2244, 663, 135, 1, 9991)                                         |
| G. B. C. | 16, 4 | $(-72, -56 \pm 8\sqrt{193}, -96 \pm 96\sqrt{37}, 24 \pm 24\sqrt{97}, -96, 96, -288, 8, -144, 24,$ |
|                                              |       | 192, 32, 1728, -64, -16, 432, 48, 1296, -48, -576, 128, -3456, 576, 13824, -1152, 144)            |
| 200                                          |       | (266240, 137280, 7280, 76440, 69888, 91520, 24960, 262080, 73920, 24024,                          |
|                                              |       | 65520,150150,440,51480,753324,20020,420420,1260,23100,10752,60060,104,4070                        |

