Eigenvalues of Graphs

$\star n \times n, 01$-matrix denoted $\mathrm{A}(\mathrm{G})$
$\star 1$ in the i, j position if vertices i and j are adjacent
$\star 0$ if vertices i and j are not adjacent.

Eigenvalues of Graphs

The adjacency matrix of a graph G on n vertices
(labelled $1,2, \ldots, n$) is an
$\star n \times n, 01$-matrix denoted $\mathrm{A}(\mathrm{G})$
$\star 1$ in the i, j position if vertices i and j are adjacent
$\star 0$ if vertices i and j are not adjacent.
The eigenvalues of G are the eigenvalues of $\varepsilon_{3} A(G)$.

Complete Graph

\&
ε_{3}^{3}
The adjacency matrix for the complete graph K_{5} ε_{3}^{3} is:

ε_{6}^{6}
$\varepsilon^{\}}$
ε^{3}
ε^{3}
$\varepsilon^{\}}$

Complete Graph

The adjacency matrix for the complete graph K_{5} $\%_{8}$ is:

$$
\left(\begin{array}{lllll}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 0
\end{array}\right)
$$

The characteristic polynomial is

$$
\phi\left(K_{5}, \lambda\right)=(1+\lambda)^{4}(4-\lambda) .
$$

Why Eigenvalues of Graphs?

Why Eigenvalues of Graphs?

Ratio Bound Let G be a k-regular graph on n vertices with least eigenvalue τ. Then

$$
\alpha(G) \leq \frac{n}{1-\frac{k}{\tau}} .
$$

Partitions

* A set partition of an n-set is a set of disjoint non-empty subsets (called classes) of the n-set whose union is the n-set.

Partitions

\star A set partition of an n-set is a set of disjoint non-empty subsets (called classes) of the n-set whose union is the n-set.

* A partition P is called a k-partition if it contains k non-empty classes, that is $|P|=k$.

Partitions

\star A k-partition of n-set P is said to be uniform if every class $P_{i} \in P$ has size n / k.

Partitions

$$
P=123|456| 789 .
$$

Qualitative Independence

Let A, B be uniform k-partitions of an n-set,

$$
A=\left\{A_{1}, A_{2}, \ldots, A_{k}\right\} \text { and } B=\left\{B_{1}, B_{2}, \ldots, B_{k}\right\}
$$

Qualitative Independence

Let A, B be uniform k-partitions of an n-set,
$A=\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$ and $B=\left\{B_{1}, B_{2}, \ldots, B_{k}\right\}$.

A and B are qualitatively independent if

$$
A_{i} \cap B_{j} \neq \emptyset \quad \text { for all } i \text { and } j .
$$

Qualitative Independence

$$
123|456| 789 \quad 126|457| 389
$$

Qualitative Independence

$$
123|456| 789
$$

$$
126|457| 389
$$

ε_{6}^{3} Example:
$\varepsilon^{\}}$ \&

$$
123|456| 789
$$

$$
147|258| 369
$$

My Favourite Graph

Uniform Qualitative Independence Graph, $U Q I(c k, k)$ \&
ε^{3}
$\varepsilon^{3} 3$
ε_{3}
ε_{3}^{3} ε_{3}^{3}
ε_{3}^{3}
E
ε^{3}
ε^{3}
ε^{3}
ξ^{3}
ε^{6}

My Favourite Graph

My Favourite Graph

Uniform Qualitative Independence Graph, $U Q I(c k, k)$

\star positive integers k and c
\star vertices are all uniform k-partitions of an $c k$-set

My Favourite Graph

Uniform Qualitative Independence Graph, $U Q I(c k, k)$

\star positive integers k and c
\star vertices are all uniform k-partitions of an $c k$-set

* vertices are adjacent if the corresponding partitions are qualitatively independent.

My Favourite Graph

Uniform Qualitative Independence Graph, $U Q I(c k, k)$

 \star positive integers k and $c$$\star$ vertices are all uniform k-partitions of an $c k$-set

* vertices are adjacent if the corresponding partitions are qualitatively independent.

Equitable Partitions

Equitable partition for a graph G : \star partition π of $V(G)$ with cells $C_{1}, C_{2}, \ldots, C_{r}$, \star the number of vertices in C_{j} adjacent to some $v \in C_{i}$ is a constant $b_{i j}$, independent of v.

Equitable Partitions

Equitable partition for a graph G :
\& partition π of $V(G)$ with cells $C_{1}, C_{2}, \ldots, C_{r}$,
$\star b_{i j}$ arcs between the $i^{t h}$ and $j^{t h}$ cells.

Theorem on Equitable Partitions

Theorem on Equitable Partitions

Theorem on Equitable Partitions

 equitable partition the vertices of G.Theorem 1. If G is a vertex-transitive graph and π is the orbit partitions of some subgroup of $\operatorname{Aut}(G)$, then if π has a singleton cell $\{u\}$, every eigenvalue of G is an eigenvalue of G / π.

A Partition on $U Q I(c k, k)$

$\varepsilon^{6} 3$
For a partition $P \in V(U Q I(n, k))$ and $s \in S_{y} m_{n}$ let P^{s} be the partition with $s(a) \in\left(P^{s}\right)_{i}$ if and only if $a \in P_{i}$. $\varepsilon^{0} 3$
\& ${ }^{3}$

A Partition on $U Q I(c k, k)$

ε_{3}
For a partition $P \in V(U Q I(n, k))$ and $s \in S_{y} m_{n}$ let P^{s} be the partition with $s(a) \in\left(P^{s}\right)_{i}$ if and only if $a \in P_{i}$. Example.
ε_{6} If $P=12 \mid 345$ and $s=(23)$, then $P^{s}=13 \mid 245$.

A Partition on $U Q I(c k, k)$

है If $P=12 \mid 345$ and $s=(23)$, then $P^{s}=13 \mid 245$.
$\varepsilon^{\varepsilon_{3}^{3}}$ For a given partition P, the fix of P is subgroup

$$
\operatorname{fix}(P)=\left\{s \in \text { Sym }_{n}: P^{s}=P\right\}
$$

A Partition on $U Q I(c k, k)$

${ }_{\text {en }}^{3}$ If $P=12 \mid 345$ and $s=(23)$, then $P^{s}=13 \mid 245$.
For a given partition P, the fix of P is subgroup

$$
\operatorname{fix}(P)=\left\{s \in \text { Sym }_{n}: P^{s}=P\right\} .
$$

For any P,
$\star \operatorname{fix}(P)$ is a subgroup of $\operatorname{Aut}(U Q I(c k, k))$,
\star the partition P is a singleton cell.

The Same but Different

 to be the $k \times k$ array with the i, j entry $\left|P_{i} \cap Q_{j}\right|$. \&
The Same but Different

ε_{8}^{63} For $P=123|456| 789$ and $Q=147|258| 369$,

The Same but Different

$$
M_{P, Q}=\begin{array}{c|ccc}
& Q_{1} & Q_{2} & Q_{3} \\
\hline P_{1} & 2 & 0 & 1 \\
P_{2} & 1 & 2 & 0 \\
P_{3} & 0 & 1 & 2
\end{array}
$$

The Same but Different

For $P, Q \in V(Q I(n, k))$ define meet table of \mathbf{P} and \mathbf{Q} to be the $k \times k$ array with the i, j entry $\left|P_{i} \cap Q_{j}\right|$.
ε_{3}^{6} For $P=123|456| 789$ and $Q=126|457| 389$,

$$
M_{P, Q}=\begin{array}{c|ccc}
& Q_{1} & Q_{2} & Q_{3} \\
\hline P_{1} & 2 & 0 & 1 \\
P_{2} & 1 & 2 & 0 \\
P_{3} & 0 & 1 & 2
\end{array}
$$

$\varepsilon^{\}}$Two meet tables are isomorphic if there is some
${ }^{8} 3$ permutation of the rows and columns of one array that produces the other array.

Why this Partition works

 table for P and Q is isomorphic to the meet table for P and $\varepsilon_{3}^{3} R$ if and only if there is a $g \in \operatorname{fix}(P)$ so that $g(Q)=R$.
Why this Partition works

 table for P and Q is isomorphic to the meet table for P and R if and only if there is a $g \in \operatorname{fix}(P)$ so that $g(Q)=R$.\star Assume $M_{P, Q}$ is isomorphic to $M_{P, R}$. For permutations

$$
\begin{aligned}
& \sigma, \phi \in \text { Sym }_{k}, \\
& \quad\left[M_{P, Q}\right]_{i, j}=\left[M_{P, R}\right]_{\sigma(i), \phi(j)}, \text { for } i, j \in\{0,1, \ldots, k-1\} .
\end{aligned}
$$

Why this Partition works

 table for P and Q is isomorphic to the meet table for P and $\varepsilon_{\mathcal{B}} R$ if and only if there is a $g \in \operatorname{fix}(P)$ so that $g(Q)=R$.\star Assume $M_{P, Q}$ is isomorphic to $M_{P, R}$. For permutations $\sigma, \phi \in \operatorname{Sym}_{k}$,

$$
\left[M_{P, Q}\right]_{i, j}=\left[M_{P, R}\right]_{\sigma(i), \phi(j)}, \text { for } i, j \in\{0,1, \ldots, k-1\} \text {. }
$$

$$
\star\left|P_{i} \cap Q_{j}\right|=\left|P_{\sigma(i)} \cap R_{\phi(j)}\right| \text {. Let } P_{i} \cap Q_{j}=\left\{a_{1}, \ldots, a_{m}\right\}
$$

$$
\text { and } P_{\sigma(i)} \cap R_{\phi(j)}=\left\{b_{1}, \ldots, b_{m}\right\} \text {. }
$$

Why this Partition works

 table for P and Q is isomorphic to the meet table for P and R if and only if there is a $g \in \operatorname{fix}(P)$ so that $g(Q)=R$.\star Assume $M_{P, Q}$ is isomorphic to $M_{P, R}$. For permutations $\sigma, \phi \in \operatorname{Sym}_{k}$,

$$
\left[M_{P, Q}\right]_{i, j}=\left[M_{P, R}\right]_{\sigma(i), \phi(j)}, \text { for } i, j \in\{0,1, \ldots, k-1\} \text {. }
$$

$$
\star\left|P_{i} \cap Q_{j}\right|=\left|P_{\sigma(i)} \cap R_{\phi(j)}\right| \text {. Let } P_{i} \cap Q_{j}=\left\{a_{1}, \ldots, a_{m}\right\}
$$ and $P_{\sigma(i)} \cap R_{\phi(j)}=\left\{b_{1}, \ldots, b_{m}\right\}$.

\star Let $g_{i, j}$ be the permutation that maps a_{l} to b_{l} for $l=1, \ldots m$.

proof con't

proof con't

proof con't

\star Define $g=\Pi_{0 \leq i, j \leq k-1} g_{i, j}$.
\star Then $g\left(P_{i}\right)=P_{\sigma(i)}$ and $g\left(Q_{j}\right)=R_{\phi(j)}$.
\star Assume that there is a $g \in \operatorname{fix}(P)$ such that $g(Q)=R$

proof con't

\star Define $g=\Pi_{0 \leq i, j \leq k-1} g_{i, j}$.
\star Then $g\left(P_{i}\right)=P_{\sigma(i)}$ and $g\left(Q_{j}\right)=R_{\phi(j)}$.
\star Assume that there is a $g \in$ fix (P) such that $g(Q)=R$
\star Define a permutation on the rows $i \in\{0, \ldots, k-1\}$ of $M_{P, Q}$ by $\sigma(i)=i^{\prime}$ if and only if $g\left(P_{i}\right)=P_{i^{\prime}}$.

proof con't

* Define $g=\Pi_{0 \leq i, j \leq k-1} g_{i, j}$.
\star Then $g\left(P_{i}\right)=P_{\sigma(i)}$ and $g\left(Q_{j}\right)=R_{\phi(j)}$.
\star Assume that there is a $g \in$ fix (P) such that $g(Q)=R$
\star Define a permutation on the rows $i \in\{0, \ldots, k-1\}$ of $M_{P, Q}$ by $\sigma(i)=i^{\prime}$ if and only if $g\left(P_{i}\right)=P_{i^{\prime}}$.
\star Define a permutation ϕ on the columns $i=0, \ldots, k-1$ of $M_{P, Q}$ by $\phi(j)=j^{\prime}$ if and only if $g\left(Q_{j}\right)=R_{j^{\prime}}$.

proof con't

* Define $g=\Pi_{0 \leq i, j \leq k-1} g_{i, j}$.
\star Then $g\left(P_{i}\right)=P_{\sigma(i)}$ and $g\left(Q_{j}\right)=R_{\phi(j)}$.
\star Assume that there is a $g \in$ fix (P) such that $g(Q)=R$
\star Define a permutation on the rows $i \in\{0, \ldots, k-1\}$ of $M_{P, Q}$ by $\sigma(i)=i^{\prime}$ if and only if $g\left(P_{i}\right)=P_{i^{\prime}}$.
\star Define a permutation ϕ on the columns $i=0, \ldots, k-1$ of $M_{P, Q}$ by $\phi(j)=j^{\prime}$ if and only if $g\left(Q_{j}\right)=R_{j^{\prime}}$.
\star Thus,

$$
\left[M_{P, Q}\right]_{\sigma(i), \phi(j)}=\left[M_{P, R}\right]_{i, j}, \text { for } i, j \in\{0,1, \ldots, k-1\}
$$

Make the Computer do the Work

Write a program to build the adjacent matrix of $U Q I(c k, k) / \pi$

Make the Computer do the Work

Write a program to build the adjacent matrix of $U Q I(c k, k) / \pi$
\star Fix a partition $P \in U Q I(c k, k)$

Make the Computer do the Work

* Fix a partition $P \in U Q I(c k, k)$
* For all partitions, build the meet table with P, keep the non-isomorphic tables.

Make the Computer do the Work

Write a program to build the adjacent matrix of $U Q I(c k, k) / \pi$
\star Fix a partition $P \in U Q I(c k, k)$
\star For all partitions, build the meet table with P, keep the non-isomorphic tables.
\star Store the non-isomorphic tables as a single partition that has the meet table with P

Make the Computer do the Work

Write a program to build the adjacent matrix of $U Q I(c k, k) / \pi$
\star Fix a partition $P \in U Q I(c k, k)$
\star For all partitions, build the meet table with P, keep the non-isomorphic tables.
\star Store the non-isomorphic tables as a single partition that has the meet table with P

* For each non-isomorphic meet table, count the number of partition from each orbit which are qualitatively independent with it.

Spectrums of Small UQIs

Graph Eigenvalues and corresponding multiplicities

9,3	$(-4,2,8,-12,36)$ ($84,120,48,27,1$)
12, 3	$\begin{aligned} & (0,8,-12,18,-27,48,108,-252,1728) \\ & (275,2673,462,616,1408,132,154,-54,1) \end{aligned}$
15,3	$\begin{aligned} & (4,8,-10,-22,29,34,-76,218,-226,284,1628,-5060,62000) \\ & (1638,21450,910,25025,32032,22113,11583,1925,7007,2002,350,90,1) \end{aligned}$
18,3	```(8, 15, 18, -60, 60, -102, -120, 120, 368, 648, -655, -2115, 2370, -2115, 2370, 2460, -4140, 24900, -89550, 1876500, 954\pm18\sqrt{}{10209)} (787644, 678912, 136136, 87516, 331500, 259896, 102102, 219912, 99144, 11934, 88128, 22848, 4641, 5508, 2244, 663, 135, 1, 9991)```
16, 4	$\begin{aligned} & (-72,-56 \pm 8 \sqrt{193},-96 \pm 96 \sqrt{37}, 24 \pm 24 \sqrt{97},-96,96,-288,8,-144,24, \\ & 192,32,1728,-64,-16,432,48,1296,-48,-576,128,-3456,576,13824,-1152,144) \\ & (266240,137280,7280,76440,69888,91520,24960,262080,73920,24024, \\ & 65520,150150,440,51480,753324,20020,420420,1260,23100,10752,60060,104,4070 \end{aligned}$

