A bound on the chromatic number of line graphs

Andrew King ${ }^{\dagger}$
Department of Computer Science
McGill University
(joint work with B. Reed and A. Vetta)

${ }^{\dagger}$ Research supported by McGill University and NSERC

Preliminaries

Chromatic number $\chi(G)$ of a graph G
= size of smallest proper colouring.

Preliminaries

Chromatic number $\chi(G)$ of a graph G
$=$ size of smallest proper colouring.
Some basic facts:

Preliminaries

Chromatic number $\chi(G)$ of a graph G
$=$ size of smallest proper colouring.
Some basic facts:
Brooks' Theorem. $\chi(G) \leq \Delta(G)$ unless G is an odd cycle or a clique.

Preliminaries

Chromatic number $\chi(G)$ of a graph G
$=$ size of smallest proper colouring.
Some basic facts:
Brooks' Theorem. $\chi(G) \leq \Delta(G)$ unless G is an odd cycle or a clique.
Trivial Upper Bound. $\chi(G) \leq \Delta(G)+1$.

Preliminaries

Chromatic number $\chi(G)$ of a graph G
$=$ size of smallest proper colouring.
Some basic facts:
Brooks' Theorem. $\chi(G) \leq \Delta(G)$ unless G is an odd cycle or a clique.
Trivial Upper Bound. $\chi(G) \leq \Delta(G)+1$.
Trivial Lower Bound. $\chi(G) \geq \omega(G)$.

Preliminaries

Chromatic number $\chi(G)$ of a graph G
$=$ size of smallest proper colouring.
Some basic facts:
Brooks' Theorem. $\chi(G) \leq \Delta(G)$ unless G is an odd cycle or a clique.
Trivial Upper Bound. $\chi(G) \leq \Delta(G)+1$.
Trivial Lower Bound. $\chi(G) \geq \omega(G)$.

$$
\begin{aligned}
& \Delta(G)=6 \\
& \omega(G)=4
\end{aligned}
$$

Preliminaries

Chromatic number $\chi(G)$ of a graph G
$=$ size of smallest proper colouring.
Some basic facts:
Brooks' Theorem. $\chi(G) \leq \Delta(G)$ unless G is an odd cycle or a clique.
Trivial Upper Bound. $\chi(G) \leq \Delta(G)+1$.
Trivial Lower Bound. $\chi(G) \geq \omega(G)$.

$\Delta(G)=6$
$\omega(G)=4$
$\chi(G)=4$

A new bound

Can we combine the trivial upper and lower bounds to make a stronger lower bound?

A new bound

Can we combine the trivial upper and lower bounds to make a stronger lower bound? Yes.

A new bound

Can we combine the trivial upper and lower bounds to make a stronger lower bound? Yes.

Theorem (Reed '98). $\exists \beta>0$ such that

$$
\chi(G) \leq(1-\beta)(\Delta(G)+1)+\beta \omega(G)
$$

Conjecture. For any graph G,

$$
\chi(G) \leq\left\lceil\frac{\Delta(G)+1+\omega(G)}{2}\right\rceil
$$

A new bound

Can we combine the trivial upper and lower bounds to make a stronger lower bound? Yes.

Theorem (Reed '98). $\exists \beta>0$ such that

$$
\chi(G) \leq(1-\beta)(\Delta(G)+1)+\beta \omega(G)
$$

Conjecture. For any graph G,

$$
\chi(G) \leq\left\lceil\frac{\Delta(G)+1+\omega(G)}{2}\right\rceil
$$

What do we know already?

A new bound

Can we combine the trivial upper and lower bounds to make a stronger lower bound? Yes.

Theorem (Reed '98). $\exists \beta>0$ such that

$$
\chi(G) \leq(1-\beta)(\Delta(G)+1)+\beta \omega(G)
$$

Conjecture. For any graph G,

$$
\chi(G) \leq\left\lceil\frac{\Delta(G)+1+\omega(G)}{2}\right\rceil
$$

What do we know already?

- $\forall G, \quad \chi^{*}(G) \leq \frac{\Delta(G)+1+\omega(G)}{2}$.

A new bound

Can we combine the trivial upper and lower bounds to make a stronger lower bound? Yes.

Theorem (Reed '98). $\exists \beta>0$ such that

$$
\chi(G) \leq(1-\beta)(\Delta(G)+1)+\beta \omega(G)
$$

Conjecture. For any graph G,

$$
\chi(G) \leq\left\lceil\frac{\Delta(G)+1+\omega(G)}{2}\right\rceil
$$

What do we know already?

- $\forall G, \quad \chi^{*}(G) \leq \frac{\Delta(G)+1+\omega(G)}{2}$.
- If $\alpha(G) \leq 2$, then $\chi(G) \leq\left\lceil\frac{\Delta(G)+1+\omega(G)}{2}\right\rceil$.

Line graphs

- The line graph $L(H)$ of a multigraph $H=(V, E)$ has vertex set E, and two vertices are adjacent if the corresponding edges share an endpoint in H.

H

Line graphs

- The line graph $L(H)$ of a multigraph $H=(V, E)$ has vertex set E, and two vertices are adjacent if the corresponding edges share an endpoint in H.

H

$L(H)$

Line graphs

- The line graph $L(H)$ of a multigraph $H=(V, E)$ has vertex set E, and two vertices are adjacent if the corresponding edges share an endpoint in H.

H

$L(H)$

Line graphs

- The line graph $L(H)$ of a multigraph $H=(V, E)$ has vertex set E, and two vertices are adjacent if the corresponding edges share an endpoint in H.

H

$L(H)$

- G is a line graph if it is $L(H)$ for some multigraph H.

The chromatic index $\chi^{\prime}(H)$

For a multigraph $H, \chi^{\prime}(H):=\chi(L(H))$.

The chromatic index $\chi^{\prime}(H)$

For a multigraph $H, \chi^{\prime}(H):=\chi(L(H))$.
Vizing's Theorem. For any H with maximum multiplicity k,

$$
\Delta(H) \leq \chi^{\prime}(H) \leq \Delta(H)+k
$$

The chromatic index $\chi^{\prime}(H)$
For a multigraph $H, \chi^{\prime}(H):=\chi(L(H))$.
Vizing's Theorem. For any H with maximum multiplicity k,

$$
\Delta(H) \leq \chi^{\prime}(H) \leq \Delta(H)+k
$$

Seymour-Goldberg Conjecture. $\chi^{\prime *}(H) \leq \chi^{\prime}(H) \leq \chi^{*}(H)+1$.

The chromatic index $\chi^{\prime}(H)$
For a multigraph $H, \chi^{\prime}(H):=\chi(L(H))$.
Vizing's Theorem. For any H with maximum multiplicity k,

$$
\Delta(H) \leq \chi^{\prime}(H) \leq \Delta(H)+k
$$

Seymour-Goldberg Conjecture. $\chi^{\prime *}(H) \leq \chi^{\prime}(H) \leq \chi^{\prime *}(H)+1$.
Theorem (CR98). For any H,

$$
\chi^{\prime}(H) \leq \max \left\{\lfloor 1.1 \Delta(H)+0.7\rfloor,\left\lceil\chi^{\prime *}(H)\right\rceil\right\} .
$$

The chromatic index $\chi^{\prime}(H)$
For a multigraph $H, \chi^{\prime}(H):=\chi(L(H))$.
Vizing's Theorem. For any H with maximum multiplicity k,

$$
\Delta(H) \leq \chi^{\prime}(H) \leq \Delta(H)+k
$$

Seymour-Goldberg Conjecture. $\chi^{\prime *}(H) \leq \chi^{\prime}(H) \leq \chi^{\prime *}(H)+1$.
Theorem (CR98). For any H,

$$
\chi^{\prime}(H) \leq \max \left\{\lfloor 1.1 \Delta(H)+0.7\rfloor,\left\lceil\chi^{\prime *}(H)\right\rceil\right\} .
$$

Corollary (MR00). For any H,

$$
\chi^{\prime}(H) \leq \max \left\{\lfloor 1.1 \Delta(H)+0.7\rfloor,\left\lceil\frac{\Delta(G)+1+\omega(G)}{2}\right\rceil\right\}
$$

Our approach

Let $G=L(H)$.
Main Theorem. For any line graph G,

$$
\chi(G) \leq\left\lceil\frac{\Delta(G)+1+\omega(G)}{2}\right\rceil
$$

Our approach

Let $G=L(H)$.
Main Theorem. For any line graph G,

$$
\chi(G) \leq\left\lceil\frac{\Delta(G)+1+\omega(G)}{2}\right\rceil
$$

We deal with two cases separately:

Our approach

Let $G=L(H)$.
Main Theorem. For any line graph G,

$$
\chi(G) \leq\left\lceil\frac{\Delta(G)+1+\omega(G)}{2}\right\rceil
$$

We deal with two cases separately:

1. $\Delta(G) \geq \frac{3}{2} \Delta(H)-1$.

Use Theorem CR98.

Our approach

Let $G=L(H)$.
Main Theorem. For any line graph G,

$$
\chi(G) \leq\left\lceil\frac{\Delta(G)+1+\omega(G)}{2}\right\rceil
$$

We deal with two cases separately:

1. $\Delta(G) \geq \frac{3}{2} \Delta(H)-1$.

Use Theorem CR98.
2. $\Delta(G)<\frac{3}{2} \Delta(H)-1$. Construct a matching.

The easy case: $\Delta(G) \geq \frac{3}{2} \Delta(H)-1$

We need only show that $\lfloor 1.1 \Delta(H)+0.7\rfloor \leq\left\lceil\frac{\Delta(G)+1+\omega(G)}{2}\right\rceil$.

The easy case: $\Delta(G) \geq \frac{3}{2} \Delta(H)-1$

We need only show that $\lfloor 1.1 \Delta(H)+0.7\rfloor \leq\left\lceil\frac{\Delta(G)+1+\omega(G)}{2}\right\rceil$.
In this case,

$$
\left\lceil\frac{5}{4} \Delta(H)\right\rceil \leq\left\lceil\frac{\Delta(G)+1+\omega(G)}{2}\right\rceil
$$

The easy case: $\Delta(G) \geq \frac{3}{2} \Delta(H)-1$

We need only show that $\lfloor 1.1 \Delta(H)+0.7\rfloor \leq\left\lceil\frac{\Delta(G)+1+\omega(G)}{2}\right\rceil$.
In this case,

$$
\left\lceil\frac{5}{4} \Delta(H)\right\rceil \leq\left\lceil\frac{\Delta(G)+1+\omega(G)}{2}\right\rceil .
$$

$\forall \Delta(H)$,

$$
\lfloor 1.1 \Delta(H)+0.7\rfloor \leq\left\lceil\frac{5}{4} \Delta(H)\right\rceil
$$

so we are done.

The interesting case: $\Delta(G)<\frac{3}{2} \Delta(H)-1$
Suppose $\forall \emptyset \neq S \subset V$,

$$
\chi\left(G_{S}\right) \leq\left\lceil\frac{\Delta\left(G_{S}\right)+1+\omega\left(G_{S}\right)}{2}\right\rceil
$$

The interesting case: $\Delta(G)<\frac{3}{2} \Delta(H)-1$
Suppose $\forall \emptyset \neq S \subset V$,

$$
\chi\left(G_{S}\right) \leq\left\lceil\frac{\Delta\left(G_{S}\right)+1+\omega\left(G_{S}\right)}{2}\right\rceil
$$

If S is a maximal stable set and $\omega\left(G_{S}\right)<\omega(G)$, then

$$
\chi(G) \leq \chi\left(G_{S}\right)+1 \leq\left\lceil\frac{\Delta\left(G_{S}\right)+3+\omega\left(G_{S}\right)}{2}\right\rceil \leq\left\lceil\frac{\Delta(G)+1+\omega(G)}{2}\right\rceil
$$

The interesting case: $\Delta(G)<\frac{3}{2} \Delta(H)-1$
Suppose $\forall \emptyset \neq S \subset V$,

$$
\chi\left(G_{S}\right) \leq\left\lceil\frac{\Delta\left(G_{S}\right)+1+\omega\left(G_{S}\right)}{2}\right\rceil
$$

If S is a maximal stable set and $\omega\left(G_{S}\right)<\omega(G)$, then

$$
\chi(G) \leq \chi\left(G_{S}\right)+1 \leq\left\lceil\frac{\Delta\left(G_{S}\right)+3+\omega\left(G_{S}\right)}{2}\right\rceil \leq\left\lceil\frac{\Delta(G)+1+\omega(G)}{2}\right\rceil
$$

We will show that such an S exists.

A good matching in $H \ldots$ recall $G=L(H)$.
How can we get a clique in G ?

A good matching in $H \ldots$ recall $G=L(H)$.
How can we get a clique in G ?

- A set of edges incident to the same vertex

A good matching in $H \ldots$ recall $G=L(H)$.
How can we get a clique in G ?

- A set of edges incident to the same vertex
- A set of edges in a triangle.

A good matching in $H \ldots$ recall $G=L(H)$.
How can we get a clique in G ?

- A set of edges incident to the same vertex
- A set of edges in a triangle.

So

$$
\omega(G)=\max \{\Delta(H), \operatorname{tri}(H)\}
$$

A good matching in $H \ldots$ recall $G=L(H)$.
How can we get a clique in G ?

- A set of edges incident to the same vertex
- A set of edges in a triangle.

So

$$
\omega(G)=\max \{\Delta(H), \operatorname{tri}(H)\}
$$

We will construct a matching in H that

A good matching in $H \ldots$ recall $G=L(H)$.
How can we get a clique in G ?

- A set of edges incident to the same vertex
- A set of edges in a triangle.

So

$$
\omega(G)=\max \{\Delta(H), \operatorname{tri}(H)\}
$$

We will construct a matching in H that

- hits every maximum degree vertex

A good matching in $H \ldots$ recall $G=L(H)$.
How can we get a clique in G ?

- A set of edges incident to the same vertex
- A set of edges in a triangle.

So

$$
\omega(G)=\max \{\Delta(H), \operatorname{tri}(H)\}
$$

We will construct a matching in H that

- hits every maximum degree vertex

A good matching in $H \ldots$ recall $G=L(H)$.
How can we get a clique in G ?

- A set of edges incident to the same vertex
- A set of edges in a triangle.

So

$$
\omega(G)=\max \{\Delta(H), \operatorname{tri}(H)\}
$$

We will construct a matching in H that

- hits every maximum degree vertex

A good matching in $H \ldots$ recall $G=L(H)$.
How can we get a clique in G ?

- A set of edges incident to the same vertex
- A set of edges in a triangle.

So

$$
\omega(G)=\max \{\Delta(H), \operatorname{tri}(H)\}
$$

We will construct a matching in H that

- hits every maximum degree vertex
- has an edge in every max weight triangle. . if $\operatorname{tri}(H) \geq \Delta(H)$.

A good matching in $H \ldots$ recall $G=L(H)$.
How can we get a clique in G ?

- A set of edges incident to the same vertex
- A set of edges in a triangle.

So

$$
\omega(G)=\max \{\Delta(H), \operatorname{tri}(H)\}
$$

We will construct a matching in H that

- hits every maximum degree vertex
- has an edge in every max weight triangle. . . if $\operatorname{tri}(H) \geq \Delta(H)$.

A good matching in $H \ldots$ recall $G=L(H)$.
How can we get a clique in G ?

- A set of edges incident to the same vertex
- A set of edges in a triangle.

So

$$
\omega(G)=\max \{\Delta(H), \operatorname{tri}(H)\}
$$

We will construct a matching in H that

- hits every maximum degree vertex
- has an edge in every max weight triangle. . . if $\operatorname{tri}(H) \geq \Delta(H)$.

A good matching in $H \ldots$ recall $G=L(H)$.
How can we get a clique in G ?

- A set of edges incident to the same vertex
- A set of edges in a triangle.

So

$$
\omega(G)=\max \{\Delta(H), \operatorname{tri}(H)\}
$$

We will construct a matching in H that

- hits every maximum degree vertex
- has an edge in every max weight triangle. . if $\operatorname{tri}(H) \geq \Delta(H)$.

Structural properties (forbidden configurations)

$\operatorname{deg}=\Delta(H)$	mult. $\geq \Delta(H) / 2$	mult. $<\Delta(H) / 2$	weight $=\omega(G)$
	HHH	HHHH	O-

Since $\Delta(G)<\frac{3}{2} \Delta(H)-1$, the following configurations are impossible:

Structural properties (forbidden configurations)

$\operatorname{deg}=\Delta(H)$	mult. $\geq \Delta(H) / 2$	mult. $<\Delta(H) / 2$	weight $=\omega(G)$
	HHH	HHHH	O-

Since $\Delta(G)<\frac{3}{2} \Delta(H)-1$, the following configurations are impossible:

Structural properties (forbidden configurations)

$\operatorname{deg}=\Delta(H)$	mult. $\geq \Delta(H) / 2$	mult. $<\Delta(H) / 2$	weight $=\omega(G)$
	HHH	HHHH	O-

Since $\Delta(G)<\frac{3}{2} \Delta(H)-1$, the following configurations are impossible:

OHMH-HO	PMrrar	

Structural properties (forbidden configurations)

$\operatorname{deg}=\Delta(H)$	mult. $\geq \Delta(H) / 2$	mult. $<\Delta(H) / 2$	weight $=\omega(G)$
	HHH	HHHH	O-

Since $\Delta(G)<\frac{3}{2} \Delta(H)-1$, the following configurations are impossible:

Structural properties (forbidden configurations)

deg $=\Delta(H)$	mult. $\geq \Delta(H) / 2$	mult. $<\Delta(H) / 2$	weight $=\omega(G)$
	HHH	HHHH	OH

Since $\Delta(G)<\frac{3}{2} \Delta(H)-1$, the following configurations are impossible:

Structural properties (forbidden configurations)

deg $=\Delta(H)$	mult. $\geq \Delta(H) / 2$	mult. $<\Delta(H) / 2$	weight $=\omega(G)$
	HHH	HHHH	O

Since $\Delta(G)<\frac{3}{2} \Delta(H)-1$, the following configurations are impossible:

- -H-HM-		

Structural properties (forbidden configurations)

deg $=\Delta(H)$	mult. $\geq \Delta(H) / 2$	mult. $<\Delta(H) / 2$	weight $=\omega(G)$
	HHH	HHHH	O-

Since $\Delta(G)<\frac{3}{2} \Delta(H)-1$, the following configurations are impossible:

-		

The construction method

We construct the matching M incrementally:

The construction method

We construct the matching M incrementally:

- Take high-multiplicity edges $\left(\geq \frac{1}{2} \Delta(H)\right)$.

The construction method

We construct the matching M incrementally:

- Take high-multiplicity edges $\left(\geq \frac{1}{2} \Delta(H)\right)$.
- Hit maximum degree vertices.

The construction method

We construct the matching M incrementally:

- Take high-multiplicity edges $\left(\geq \frac{1}{2} \Delta(H)\right)$.
- Hit maximum degree vertices.
- Cover maximum weight triangles.

The construction method

We construct the matching M incrementally:

- Take high-multiplicity edges $\left(\geq \frac{1}{2} \Delta(H)\right)$.

Be greedy.

- Hit maximum degree vertices.
- Cover maximum weight triangles.

The construction method

We construct the matching M incrementally:

- Take high-multiplicity edges $\left(\geq \frac{1}{2} \Delta(H)\right)$.

Be greedy.

- Hit maximum degree vertices.

Use Hall's Theorem.

- Cover maximum weight triangles.

The construction method

We construct the matching M incrementally:

- Take high-multiplicity edges $\left(\geq \frac{1}{2} \Delta(H)\right)$.

Be greedy.

- Hit maximum degree vertices.

Use Hall's Theorem.

- Cover maximum weight triangles.

Use structure...greedily!

Hitting maximum degree vertices

Hitting maximum degree vertices

Hitting maximum degree vertices

For any set S of remaining max-degree vertices,

$$
N(S) \geq S .
$$

Hitting maximum degree vertices

For any set S of remaining max-degree vertices,

$$
N(S) \geq S .
$$

Hitting maximum degree vertices

For any set S of remaining max-degree vertices,

$$
N(S) \geq S .
$$

Hitting maximum degree vertices

For any set S of remaining max-degree vertices,

$$
N(S) \geq S .
$$

So by Hall's Theorem we can hit them with a matching.

Hitting maximum degree vertices

For any set S of remaining max-degree vertices,

$$
N(S) \geq S .
$$

So by Hall's Theorem we can hit them with a matching.
There will be no conflict:

Covering maximum weight triangles

Covering maximum weight triangles

Covering maximum weight triangles

Finishing up

We have shown:

$$
\Delta(G)<\frac{3}{2} \Delta(H)-1 \quad \Rightarrow \quad \begin{gathered}
H \text { contains a matching } M \\
\text { s.t. }
\end{gathered}
$$

This completes the proof of the Main Theorem.

Finishing up

We have shown:

$$
\Delta(G)<\frac{3}{2} \Delta(H)-1 \quad \Rightarrow \quad \begin{gathered}
H \text { contains a matching } M \\
\text { s.t. } \\
\omega(L(H-M))<\omega(G) .
\end{gathered}
$$

This completes the proof of the Main Theorem.
Recall:
Main Theorem. For any line graph G,

$$
\chi(G) \leq\left\lceil\frac{\Delta(G)+1+\omega(G)}{2}\right\rceil
$$

Future work

The bound

$$
\chi(G) \leq\left\lceil\frac{\Delta(G)+1+\omega(G)}{2}\right\rceil
$$

is conjectured to hold for all graphs.
Promising graph classes:

Future work

The bound

$$
\chi(G) \leq\left\lceil\frac{\Delta(G)+1+\omega(G)}{2}\right\rceil
$$

is conjectured to hold for all graphs.

Promising graph classes:

- Quasi-line graphs

Every vertex is bisimplicial

Future work

The bound

$$
\chi(G) \leq\left\lceil\frac{\Delta(G)+1+\omega(G)}{2}\right\rceil
$$

is conjectured to hold for all graphs.
Promising graph classes:

- Quasi-line graphs

Every vertex is bisimplicial

- Claw-free graphs

No induced $K_{1,3}$

Future work

The bound

$$
\chi(G) \leq\left\lceil\frac{\Delta(G)+1+\omega(G)}{2}\right\rceil
$$

is conjectured to hold for all graphs.
Promising graph classes:

- Quasi-line graphs

Every vertex is bisimplicial

- Claw-free graphs

No induced $K_{1,3}$

Line graphs \subset Quasi-line graphs \subset Claw-free graphs

Selected references

References

[1] A. Caprara and R. Rizzi. Improving a family of approximation algorithms to edge color multigraphs. Information Processing Letters, 68:11-15, 1998.
[2] M. Molloy and B. Reed. Graph Colouring and the Probabilistic Method. Springer-Verlag, Berlin, 2000.
[3] B. Reed. ω, δ, and χ. Journal of Graph Theory, 27:177-212, 1998.

