
A bound on the chromatic number of line graphs

Andrew King†

Department of Computer Science

McGill University

(joint work with B. Reed and A. Vetta)

†Research supported by McGill University and NSERC

A bound on the chromatic number of line graphs – p.1/16



Preliminaries

Chromatic number χ(G) of a graph G
= size of smallest proper colouring.

Some basic facts:

Brooks’ Theorem. χ(G) ≤ ∆(G) unless G is an odd cycle or a clique.

Trivial Upper Bound. χ(G) ≤ ∆(G) + 1.

Trivial Lower Bound. χ(G) ≥ ω(G).

∆(G) = 6
ω(G) = 4
χ(G) = 4
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A new bound

Can we combine the trivial upper and lower
bounds to make a stronger lower bound?

Yes.

Theorem (Reed ’98). ∃ β > 0 such that

χ(G) ≤ (1 − β)(∆(G) + 1) + βω(G).

Conjecture. For any graph G,

χ(G) ≤

⌈

∆(G) + 1 + ω(G)

2

⌉

.

What do we know already?

• ∀ G, χ∗(G) ≤ ∆(G)+1+ω(G)
2 .

• If α(G) ≤ 2, then χ(G) ≤
⌈

∆(G)+1+ω(G)
2

⌉

.
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Line graphs

• The line graph L(H) of a multigraph H = (V, E) has vertex set E,
and two vertices are adjacent if the corresponding edges share an
endpoint in H.

H

• G is a line graph if it is L(H) for some multigraph H.
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The chromatic index χ′(H)

For a multigraph H, χ′(H) := χ(L(H)).

Vizing’s Theorem. For any H with maximum multiplicity k,

∆(H) ≤ χ′(H) ≤ ∆(H) + k.

Seymour-Goldberg Conjecture. χ′∗(H) ≤ χ′(H) ≤ χ′∗(H) + 1.

Theorem (CR98). For any H ,

χ′(H) ≤ max{b1.1∆(H) + 0.7c, dχ′∗(H)e}.

Corollary (MR00). For any H ,

χ′(H) ≤ max

{

b1.1∆(H) + 0.7c,

⌈

∆(G) + 1 + ω(G)

2

⌉}

.
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Our approach

Let G = L(H).
Main Theorem. For any line graph G,

χ(G) ≤

⌈

∆(G) + 1 + ω(G)

2

⌉

.

We deal with two cases separately:

1. ∆(G) ≥ 3
2∆(H) − 1.

Use Theorem CR98.

2. ∆(G) < 3
2∆(H) − 1.

Construct a matching.
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The easy case: ∆(G) ≥ 3
2∆(H) − 1

We need only show that b1.1∆(H) + 0.7c ≤
⌈

∆(G)+1+ω(G)
2

⌉

.

In this case,
⌈

5

4
∆(H)

⌉

≤

⌈

∆(G) + 1 + ω(G)

2

⌉

.

∀ ∆(H),

b1.1∆(H) + 0.7c ≤

⌈

5

4
∆(H)

⌉

,

so we are done.
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The interesting case: ∆(G) < 3
2∆(H) − 1

Suppose ∀ ∅ 6= S ⊂ V ,

χ(GS) ≤

⌈

∆(GS) + 1 + ω(GS)

2

⌉

.

If S is a maximal stable set and ω(GS) < ω(G), then

χ(G) ≤ χ(GS) + 1 ≤

⌈

∆(GS) + 3 + ω(GS)

2

⌉

≤

⌈

∆(G) + 1 + ω(G)

2

⌉

.

We will show that such an S exists.
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A good matching in H . . . recall G = L(H).

How can we get a clique in G?

• A set of edges incident to the same vertex

• A set of edges in a triangle.

So
ω(G) = max {∆(H), tri(H)} .

We will construct a matching in H that
• hits every maximum degree vertex
• has an edge in every max weight triangle. . . if tri(H) ≥ ∆(H).
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Structural properties (forbidden configurations)

deg = ∆(H) mult. ≥ ∆(H)/2 mult. < ∆(H)/2 weight = ω(G)

Since ∆(G) < 3
2∆(H) − 1, the following configurations are impossible:
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The construction method

We construct the matching M incrementally:

• Take high-multiplicity edges (≥ 1
2∆(H)).

Be greedy.

• Hit maximum degree vertices.
Use Hall’s Theorem.

• Cover maximum weight triangles.
Use structure. . . greedily!
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Hitting maximum degree vertices

= ∆(H)

< ∆(H)

 

For any set S of remaining max-degree vertices,

N(S) ≥ S.

So by Hall’s Theorem we can hit them with a matching.

There will be no conflict:
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Covering maximum weight triangles

We already covered every
ω(G)-weight triangles with a
mult. ≥ ∆(H)/2 edge.

We can extend the matching
to cover the remaining ω(G)-
weight triangles.
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Covering maximum weight triangles

We already covered every
ω(G)-weight triangles with a
mult. ≥ ∆(H)/2 edge.

All bad triangles are hit!

We can extend the matching
to cover the remaining ω(G)-
weight triangles.
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Finishing up

We have shown:

∆(G) <
3

2
∆(H) − 1 ⇒

H contains a matching M

s.t.

ω(L(H − M)) < ω(G).

This completes the proof of the Main Theorem.

Recall:

Main Theorem. For any line graph G,

χ(G) ≤

⌈

∆(G) + 1 + ω(G)

2

⌉

.
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Future work

The bound

χ(G) ≤

⌈

∆(G) + 1 + ω(G)

2

⌉

is conjectured to hold for all graphs.

Promising graph classes:

• Quasi-line graphs
Every vertex is bisimplicial

• Claw-free graphs
No induced K1,3

Line graphs ⊂ Quasi-line graphs ⊂ Claw-free graphs
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