A bound on the chromatic number of line graphs

Andrew King[†]

Department of Computer Science

McGill University

(joint work with B. Reed and A. Vetta)

[†]Research supported by McGill University and NSERC

Chromatic number $\chi(G)$ of a graph G = size of smallest proper colouring.

Chromatic number $\chi(G)$ of a graph G = size of smallest proper colouring.

Some basic facts:

Chromatic number $\chi(G)$ of a graph G = size of smallest proper colouring.

Some basic facts:

Brooks' Theorem. $\chi(G) \leq \Delta(G)$ unless G is an odd cycle or a clique.

Chromatic number $\chi(G)$ of a graph G = size of smallest proper colouring.

Some basic facts:

Brooks' Theorem. $\chi(G) \leq \Delta(G)$ unless G is an odd cycle or a clique.

Trivial Upper Bound. $\chi(G) \leq \Delta(G) + 1$.

Chromatic number $\chi(G)$ of a graph G = size of smallest proper colouring.

Some basic facts:

Brooks' Theorem. $\chi(G) \leq \Delta(G)$ unless G is an odd cycle or a clique.

Trivial Upper Bound. $\chi(G) \leq \Delta(G) + 1$.

Trivial Lower Bound. $\chi(G) \ge \omega(G)$.

Chromatic number $\chi(G)$ of a graph G = size of smallest proper colouring.

Some basic facts:

Brooks' Theorem. $\chi(G) \leq \Delta(G)$ unless G is an odd cycle or a clique.

Trivial Upper Bound. $\chi(G) \leq \Delta(G) + 1$.

Trivial Lower Bound. $\chi(G) \ge \omega(G)$.

Chromatic number $\chi(G)$ of a graph G = size of smallest proper colouring.

Some basic facts:

Brooks' Theorem. $\chi(G) \leq \Delta(G)$ unless G is an odd cycle or a clique.

Trivial Upper Bound. $\chi(G) \leq \Delta(G) + 1$.

Trivial Lower Bound. $\chi(G) \ge \omega(G)$.

Can we combine the trivial upper and lower bounds to make a stronger lower bound?

Can we combine the trivial upper and lower bounds to make a stronger lower bound? Yes.

Can we combine the trivial upper and lower bounds to make a stronger lower bound? Yes.

Theorem (Reed '98). $\exists \beta > 0$ such that

$$\chi(G) \le (1 - \beta)(\Delta(G) + 1) + \beta\omega(G).$$

Conjecture. For any graph G,

$$\chi(G) \le \left\lceil \frac{\Delta(G) + 1 + \omega(G)}{2} \right\rceil.$$

Can we combine the trivial upper and lower bounds to make a stronger lower bound? Yes.

Theorem (Reed '98). $\exists \beta > 0$ such that

$$\chi(G) \le (1 - \beta)(\Delta(G) + 1) + \beta\omega(G).$$

Conjecture. For any graph G,

$$\chi(G) \le \left\lceil \frac{\Delta(G) + 1 + \omega(G)}{2} \right\rceil.$$

What do we know already?

Can we combine the trivial upper and lower bounds to make a stronger lower bound? Yes.

Theorem (Reed '98). $\exists \beta > 0$ such that

$$\chi(G) \le (1 - \beta)(\Delta(G) + 1) + \beta\omega(G).$$

Conjecture. For any graph G,

$$\chi(G) \le \left\lceil \frac{\Delta(G) + 1 + \omega(G)}{2} \right\rceil.$$

What do we know already?

•
$$\forall G$$
, $\chi^*(G) \leq \frac{\Delta(G) + 1 + \omega(G)}{2}$.

Can we combine the trivial upper and lower bounds to make a stronger lower bound? Yes.

Theorem (Reed '98). $\exists \beta > 0$ such that

$$\chi(G) \le (1 - \beta)(\Delta(G) + 1) + \beta\omega(G).$$

Conjecture. For any graph G,

$$\chi(G) \le \left\lceil \frac{\Delta(G) + 1 + \omega(G)}{2} \right\rceil.$$

What do we know already?

•
$$\forall G$$
, $\chi^*(G) \leq \frac{\Delta(G) + 1 + \omega(G)}{2}$.

• If
$$\alpha(G) \leq 2$$
, then $\chi(G) \leq \left\lceil \frac{\Delta(G) + 1 + \omega(G)}{2} \right\rceil$.

• The line graph L(H) of a multigraph H=(V,E) has vertex set E, and two vertices are adjacent if the corresponding edges share an endpoint in H.

H

• The line graph L(H) of a multigraph H=(V,E) has vertex set E, and two vertices are adjacent if the corresponding edges share an endpoint in H.

• The line graph L(H) of a multigraph H=(V,E) has vertex set E, and two vertices are adjacent if the corresponding edges share an endpoint in H.

• The line graph L(H) of a multigraph H = (V, E) has vertex set E, and two vertices are adjacent if the corresponding edges share an endpoint in H.

• G is a line graph if it is L(H) for some multigraph H.

For a multigraph H, $\chi'(H) := \chi(L(H))$.

For a multigraph H, $\chi'(H) := \chi(L(H))$.

Vizing's Theorem. For any H with maximum multiplicity k,

$$\Delta(H) \le \chi'(H) \le \Delta(H) + k.$$

For a multigraph H, $\chi'(H) := \chi(L(H))$.

Vizing's Theorem. For any H with maximum multiplicity k,

$$\Delta(H) \le \chi'(H) \le \Delta(H) + k.$$

Seymour-Goldberg Conjecture. $\chi'^*(H) \leq \chi'(H) \leq \chi'^*(H) + 1$.

For a multigraph H, $\chi'(H) := \chi(L(H))$.

Vizing's Theorem. For any H with maximum multiplicity k,

$$\Delta(H) \le \chi'(H) \le \Delta(H) + k.$$

Seymour-Goldberg Conjecture. $\chi'^*(H) \leq \chi'(H) \leq \chi'^*(H) + 1$.

Theorem (CR98). For any H,

$$\chi'(H) \le \max\{\lfloor 1.1\Delta(H) + 0.7\rfloor, \lceil \chi'^*(H) \rceil\}.$$

For a multigraph H, $\chi'(H) := \chi(L(H))$.

Vizing's Theorem. For any H with maximum multiplicity k,

$$\Delta(H) \le \chi'(H) \le \Delta(H) + k.$$

Seymour-Goldberg Conjecture. $\chi'^*(H) \leq \chi'(H) \leq \chi'^*(H) + 1$.

Theorem (CR98). For any H,

$$\chi'(H) \le \max\{\lfloor 1.1\Delta(H) + 0.7\rfloor, \lceil \chi'^*(H)\rceil\}.$$

Corollary (MR00). For any H,

$$\chi'(H) \le \max\left\{\lfloor 1.1\Delta(H) + 0.7\rfloor, \left\lceil \frac{\Delta(G) + 1 + \omega(G)}{2} \right\rceil\right\}.$$

Let
$$G = L(H)$$
.

Main Theorem. For any line graph G,

$$\chi(G) \le \left\lceil \frac{\Delta(G) + 1 + \omega(G)}{2} \right\rceil.$$

Let
$$G = L(H)$$
.

Main Theorem. For any line graph G,

$$\chi(G) \le \left\lceil \frac{\Delta(G) + 1 + \omega(G)}{2} \right\rceil.$$

We deal with two cases separately:

Let
$$G = L(H)$$
.

Main Theorem. For any line graph G,

$$\chi(G) \le \left\lceil \frac{\Delta(G) + 1 + \omega(G)}{2} \right\rceil.$$

We deal with two cases separately:

1.
$$\Delta(G) \geq \frac{3}{2}\Delta(H) - 1$$
. Use Theorem CR98.

Let
$$G = L(H)$$
.

Main Theorem. For any line graph G,

$$\chi(G) \le \left\lceil \frac{\Delta(G) + 1 + \omega(G)}{2} \right\rceil.$$

We deal with two cases separately:

- 1. $\Delta(G) \geq \frac{3}{2}\Delta(H) 1$. Use Theorem CR98.
- 2. $\Delta(G) < \frac{3}{2}\Delta(H) 1$. Construct a matching.

The easy case: $\Delta(G) \geq \frac{3}{2}\Delta(H) - 1$

We need only show that $\lfloor 1.1\Delta(H) + 0.7 \rfloor \leq \left\lceil \frac{\Delta(G) + 1 + \omega(G)}{2} \right\rceil$.

The easy case: $\Delta(G) \geq \frac{3}{2}\Delta(H) - 1$

We need only show that $\lfloor 1.1\Delta(H) + 0.7 \rfloor \leq \left\lceil \frac{\Delta(G) + 1 + \omega(G)}{2} \right\rceil$.

In this case,

$$\left\lceil \frac{5}{4} \Delta(H) \right\rceil \le \left\lceil \frac{\Delta(G) + 1 + \omega(G)}{2} \right\rceil.$$

The easy case: $\Delta(G) \geq \frac{3}{2}\Delta(H) - 1$

We need only show that $\lfloor 1.1\Delta(H) + 0.7 \rfloor \leq \left\lceil \frac{\Delta(G) + 1 + \omega(G)}{2} \right\rceil$.

In this case,

$$\left\lceil \frac{5}{4} \Delta(H) \right\rceil \le \left\lceil \frac{\Delta(G) + 1 + \omega(G)}{2} \right\rceil.$$

$$\forall \Delta(H),$$

$$\lfloor 1.1\Delta(H) + 0.7 \rfloor \le \lceil \frac{5}{4}\Delta(H) \rceil,$$

so we are done.

The interesting case: $\Delta(G) < \frac{3}{2}\Delta(H) - 1$

Suppose $\forall \emptyset \neq S \subset V$,

$$\chi(G_S) \leq \left\lceil \frac{\Delta(G_S) + 1 + \omega(G_S)}{2} \right\rceil.$$

The interesting case: $\Delta(G) < \frac{3}{2}\Delta(H) - 1$

Suppose $\forall \emptyset \neq S \subset V$,

$$\chi(G_S) \leq \left\lceil \frac{\Delta(G_S) + 1 + \omega(G_S)}{2} \right\rceil.$$

If S is a maximal stable set and $\omega(G_S) < \omega(G)$, then

$$\chi(G) \le \chi(G_S) + 1 \le \left\lceil \frac{\Delta(G_S) + 3 + \omega(G_S)}{2} \right\rceil \le \left\lceil \frac{\Delta(G) + 1 + \omega(G)}{2} \right\rceil.$$

The interesting case: $\Delta(G) < \frac{3}{2}\Delta(H) - 1$

Suppose $\forall \emptyset \neq S \subset V$,

$$\chi(G_S) \leq \left\lceil \frac{\Delta(G_S) + 1 + \omega(G_S)}{2} \right\rceil.$$

If S is a maximal stable set and $\omega(G_S) < \omega(G)$, then

$$\chi(G) \le \chi(G_S) + 1 \le \left\lceil \frac{\Delta(G_S) + 3 + \omega(G_S)}{2} \right\rceil \le \left\lceil \frac{\Delta(G) + 1 + \omega(G)}{2} \right\rceil.$$

We will show that such an S exists.

A good matching in H . . . recall G = L(H) .

How can we get a clique in G?

A good matching in H . . . recall G = L(H) .

How can we get a clique in G?

A set of edges incident to the same vertex

A good matching in H . . . recall G = L(H).

How can we get a clique in G?

- A set of edges incident to the same vertex
- A set of edges in a triangle.

How can we get a clique in G?

- A set of edges incident to the same vertex
- A set of edges in a triangle.

So

$$\omega(G) = \max \{ \Delta(H), \operatorname{tri}(H) \}.$$

How can we get a clique in G?

- A set of edges incident to the same vertex
- A set of edges in a triangle.

So

$$\omega(G) = \max \{ \Delta(H), \operatorname{tri}(H) \}.$$

How can we get a clique in G?

- A set of edges incident to the same vertex
- A set of edges in a triangle.

So

$$\omega(G) = \max \{ \Delta(H), \operatorname{tri}(H) \}.$$

We will construct a matching in H that

hits every maximum degree vertex

How can we get a clique in G?

- A set of edges incident to the same vertex
- A set of edges in a triangle.

So

$$\omega(G) = \max \{ \Delta(H), \operatorname{tri}(H) \}.$$

We will construct a matching in H that

hits every maximum degree vertex

How can we get a clique in G?

- A set of edges incident to the same vertex
- A set of edges in a triangle.

So

$$\omega(G) = \max \{ \Delta(H), \operatorname{tri}(H) \}.$$

We will construct a matching in H that

hits every maximum degree vertex

How can we get a clique in G?

- A set of edges incident to the same vertex
- A set of edges in a triangle.

So

$$\omega(G) = \max \{ \Delta(H), \operatorname{tri}(H) \}.$$

- hits every maximum degree vertex
- has an edge in every max weight triangle... if $tri(H) \ge \Delta(H)$.

How can we get a clique in G?

- A set of edges incident to the same vertex
- A set of edges in a triangle.

So

$$\omega(G) = \max \{ \Delta(H), \operatorname{tri}(H) \}.$$

- hits every maximum degree vertex
- has an edge in every max weight triangle... if $tri(H) \ge \Delta(H)$.

How can we get a clique in G?

- A set of edges incident to the same vertex
- A set of edges in a triangle.

So

$$\omega(G) = \max \{ \Delta(H), \operatorname{tri}(H) \}.$$

- hits every maximum degree vertex
- has an edge in every max weight triangle... if $tri(H) \ge \Delta(H)$.

How can we get a clique in G?

- A set of edges incident to the same vertex
- A set of edges in a triangle.

So

$$\omega(G) = \max \{ \Delta(H), \operatorname{tri}(H) \}.$$

- hits every maximum degree vertex
- has an edge in every max weight triangle... if $tri(H) \ge \Delta(H)$.

$\deg = \Delta(H)$	$mult. \geq \Delta(H)/2$	$mult. < \Delta(H)/2$	$weight = \omega(G)$

$\deg = \Delta(H)$	$mult. \geq \Delta(H)/2$	$mult. < \Delta(H)/2$	$weight = \omega(G)$

$\deg = \Delta(H)$	$mult. \geq \Delta(H)/2$	$mult. < \Delta(H)/2$	$weight = \omega(G)$

$\deg = \Delta(H)$	$mult. \geq \Delta(H)/2$	$mult. < \Delta(H)/2$	$weight = \omega(G)$

$\deg = \Delta(H)$	$mult. \geq \Delta(H)/2$	$mult. < \Delta(H)/2$	$weight = \omega(G)$

$\deg = \Delta(H)$	$mult. \geq \Delta(H)/2$	$mult. < \Delta(H)/2$	$weight = \omega(G)$

$\deg = \Delta(H)$	$mult. \geq \Delta(H)/2$	$mult. < \Delta(H)/2$	$weight = \omega(G)$

We construct the matching M incrementally:

We construct the matching M incrementally:

• Take high-multiplicity edges $(\geq \frac{1}{2}\Delta(H))$.

We construct the matching M incrementally:

• Take high-multiplicity edges $(\geq \frac{1}{2}\Delta(H))$.

Hit maximum degree vertices.

We construct the matching M incrementally:

• Take high-multiplicity edges $(\geq \frac{1}{2}\Delta(H))$.

Hit maximum degree vertices.

Cover maximum weight triangles.

We construct the matching M incrementally:

• Take high-multiplicity edges $(\geq \frac{1}{2}\Delta(H))$.

Be greedy.

Hit maximum degree vertices.

Cover maximum weight triangles.

We construct the matching M incrementally:

• Take high-multiplicity edges $(\geq \frac{1}{2}\Delta(H))$.

Be greedy.

Hit maximum degree vertices.

Use Hall's Theorem.

Cover maximum weight triangles.

We construct the matching M incrementally:

• Take high-multiplicity edges $(\geq \frac{1}{2}\Delta(H))$.

Be greedy.

Hit maximum degree vertices.

Use Hall's Theorem.

Cover maximum weight triangles.

Use structure...greedily!

For any set S of remaining max-degree vertices,

$$N(S) \geq S$$
.

For any set S of remaining max-degree vertices,

$$N(S) \geq S$$
.

For any set S of remaining max-degree vertices,

$$N(S) \geq S$$
.

For any set S of remaining max-degree vertices,

$$N(S) \ge S$$
.

So by Hall's Theorem we can hit them with a matching.

For any set S of remaining max-degree vertices,

$$N(S) \ge S$$
.

So by Hall's Theorem we can hit them with a matching.

There will be no conflict:

Covering maximum weight triangles

We already covered every $\omega(G)$ -weight triangles with a mult. $\geq \Delta(H)/2$ edge.

We can extend the matching to cover the remaining $\omega(G)$ -weight triangles.

Covering maximum weight triangles

Covering maximum weight triangles

Finishing up

We have shown:

$$\Delta(G) < \frac{3}{2}\Delta(H) - 1 \quad \Rightarrow \qquad \begin{array}{c} H \text{ contains a matching } M \\ \text{s.t.} \\ \omega(L(H-M)) < \omega(G). \end{array}$$

This completes the proof of the Main Theorem.

Finishing up

We have shown:

$$\Delta(G) < \frac{3}{2}\Delta(H) - 1 \quad \Rightarrow \qquad \begin{array}{c} H \text{ contains a matching } M \\ \text{s.t.} \\ \omega(L(H-M)) < \omega(G). \end{array}$$

This completes the proof of the Main Theorem.

Recall:

Main Theorem. For any line graph G,

$$\chi(G) \le \left\lceil \frac{\Delta(G) + 1 + \omega(G)}{2} \right\rceil.$$

The bound

$$\chi(G) \le \left\lceil \frac{\Delta(G) + 1 + \omega(G)}{2} \right\rceil$$

is conjectured to hold for all graphs.

Promising graph classes:

The bound

$$\chi(G) \le \left\lceil \frac{\Delta(G) + 1 + \omega(G)}{2} \right\rceil$$

is conjectured to hold for all graphs.

Promising graph classes:

Quasi-line graphs
 Every vertex is bisimplicial

The bound

$$\chi(G) \le \left\lceil \frac{\Delta(G) + 1 + \omega(G)}{2} \right\rceil$$

is conjectured to hold for all graphs.

Promising graph classes:

- Quasi-line graphs
 Every vertex is bisimplicial
- Claw-free graphs
 No induced $K_{1,3}$

The bound

$$\chi(G) \le \left\lceil \frac{\Delta(G) + 1 + \omega(G)}{2} \right\rceil$$

is conjectured to hold for all graphs.

Promising graph classes:

- Quasi-line graphs
 Every vertex is bisimplicial
- Claw-free graphs
 No induced $K_{1,3}$

Line graphs ⊂ Quasi-line graphs ⊂ Claw-free graphs

Selected references

References

- [1] A. Caprara and R. Rizzi. Improving a family of approximation algorithms to edge color multigraphs. *Information Processing Letters*, 68:11–15, 1998.
- [2] M. Molloy and B. Reed. *Graph Colouring and the Probabilistic Method*. Springer-Verlag, Berlin, 2000.
- [3] B. Reed. ω , δ , and χ . *Journal of Graph Theory*, 27:177–212, 1998.