Planar graphs & the discharging method

On 4-choosability of planar graphs

Babak Farzad
Department of Computer Science
University of Toronto

Appel & Haken 77: Four Colour Theorem

Based on Euler's formula: for any planar graph |V|-|E|+|F|=2

Appel & Haken 77: Four Colour Theorem

Based on Euler's formula: for any planar graph |V|-|E|+|F|=2

C: a class of planar graphs

P: a specific property

goal: to prove that every graph in C has property P

minimal counterexample

- · minimal counterexample
- forbidden configurations
 - (i) properties of C (ii) minimal counterexample

- · minimal counterexample
- forbidden configurations
 - (i) properties of C (ii) minimal counterexample
- charging: assign initial charges to vertices & faces
 s. t. total charge is negative (Euler's formula)

- minimal counterexample G
- forbidden configurations
 - (i) properties of C (ii) minimal counterexample
- · charging:

$$ch(v) = 2deg(v)-6$$
 vertex v
 $ch(f) = |f|-6$ face f

total charge
$$\leq \sum 2 \text{deg(v)-6} + \sum \text{deg(f)-6} = -12$$

v $\in V$ f $\in F$

- · minimal counterexample
- forbidden configurations
 - (i) properties of C (ii) minimal counterexample
- charging: assign initial charges to vertices & faces
 s. t. total charge is negative (Euler's formula)
- discharging (rules): distribute the charge of each element to its neighbours

preserves total charge

- · minimal counterexample
- forbidden configurations
 - (i) properties of C (ii) minimal counterexample
- charging: assign initial charges to vertices & faces
 s. t. total charge is negative (Euler's formula)
- discharging (rules): distribute the charge of each element to its neighbours

preserves total charge

 conclusion: recompute total charge showing charge of every element is non-negative

every simple graph is $(\Delta+1)$ -edge choosable

 Δ is the maximum degree of the graph

every simple graph is $(\Delta+1)$ -edge choosable

Zhang & Wu 04

every planar graph without 4-cycles is (Δ +1)-edge choosable except for Δ = 5: not settled

minimal counterexample

forbidden configurations in minimal counterexample

(i) properties of *C*has no 4-face
has no adjacent 3-faces

forbidden configurations in minimal counterexample

- (i) properties of *C*has no 4-face
 has no adjacent 3-faces
- (ii) minimal counterexample $\delta \geq 3$

forbidden configurations in minimal counterexample

- (i) properties of *C*has no 4-face
 has no adjacent 3-faces
- (ii) minimal counterexample

$$\delta \geq 3$$

 $deg(u) + deg(v) \geq 8$ if $(u, v) \in E$

forbidden configurations in minimal counterexample

- (i) properties of *C*has no 4-face
 has no adjacent 3-faces
- (ii) minimal counterexample $\delta \geq 3$ $\deg(u) + \deg(v) \geq 8 \quad \text{if } (u,v) \in E$ if a 4-vertex is the intersection of two 3-faces à they are incident to at least two 5-vertices

- every 5-vertex
 - 1 charge to every incident 3-face
 - 1/5 charge to every incident 5-face
- every 4-vertex
 - 1 charge to every incident 3-face
 - 1/5 charge to every incident 5-face

- every 5-vertex
 3/2 charge to every incident 3-face
 1/5 charge to every incident 5-face
- every 4-vertex
 - 1 charge to every incident 3-face
 - 1/5 charge to every incident 5-face

- every 5-vertex
 3/2 charge to every incident 3-face
 1/3 charge to every incident 5-face
- every 4-vertex
 - 1 charge to every incident 3-face
 - 1/5 charge to every incident 5-face

- every 5-vertex
 3/2 charge to every incident 3-face
 1/3 charge to every incident 5-face
- every 4-vertex
 - 1 charge to every incident 3-face if has no 5-vertex $\frac{3}{4}$ charge to every incident 3-face if has one 5-vertex 1/5 charge to every incident 5-face

unexpected configurations in planar graphs without 7-cycles

• Lam, Shiu & Xu, On structure of some plane graphs with application to choosability, J. Combin. Theory Ser. B, 2001

claimed in planar graphs without 6-cycles:

- a k-vertex, $k \ge 5$, is incident to at most $3k/4 \le 5$ -faces
- a 5-face is not adjacent to any 3-face
- · a 4-face is adjacent to at most one 3-face
- a 3-face is adjacent to at most two 3-faces
- · two adjacent 3-faces à none is adjacent to a 4-face

- Lam, Shiu & Xu, On structure of some plane graphs with application to choosability, J. Combin. Theory Ser. B, 2001
- Wang & Lih, Choosability and edge choosability of planar graphs without five cycles, Appl. Math. Lett., 2002
- Wang & Lih, Structural properties and edge choosability of planar graphs without 6-cycles, Combin. Probab. Comput., 2001

 Wang & Lih, Structural properties and edge choosability of planar graphs without 6-cycles, Combin. Probab. Comput., 2001

every planar graph without 6-cycles is (Δ +1)-edge choosable when $\Delta \neq 5$

 Wang & Lih, Structural properties and edge choosability of planar graphs without 6-cycles, Combin. Probab. Comput., 2001

every planar graph without 6-cycles is (Δ +1)-edge choosable when $\Delta \neq 5$

based on: every planar graph without 6-cycles excludes:

- a 5-face adjacent to a 3-face
- a 4-face adjacent to two non-adjacent 3-faces
- a 4-face share one edge with two adjacent 3-faces

 Wang & Lih, Structural properties and edge choosability of planar graphs without 6-cycles, Combin. Probab. Comput., 2001

every planar graph without 6-cycles is (Δ +1)-edge choosable when $\Delta \neq 5$

 Wang & Lih, Structural properties and edge choosability of planar graphs without 6-cycles, Combin. Probab. Comput., 2001

every planar graph without 6-cycles is (Δ +1)-edge choosable when $\Delta \neq 5$

F 04, every planar graph without 6-cycles is (Δ +1)-edge choosable

every simple graph is $(\Delta+1)$ -edge choosable

every simple graph is $(\Delta+1)$ -edge choosable

Conjecture is proved for simple planar graphs

```
Zhang & Wu 04: without 3-cycles
```

Zhang & Wu 04 and F 04: without 4-cycles

Wang & Lih 02: without 5-cycles

Wang & Lih 02: without intersecting 3-cycles, $\Delta \neq 5$

every simple graph is $(\Delta+1)$ -edge choosable

Conjecture is proved for simple planar graphs

```
Zhang & Wu 04: without 3-cycles
```

Zhang & Wu 04 and F 04: without 4-cycles

Wang & Lih 02: without 5-cycles

Wang & Lih 02: without intersecting 3-cycles, $\Delta \neq 5$

F 04: without 6-cycles

forbidden configurations in a minimal counterexample

- $\delta \geq 3$
- $deg(u) + deg(v) \ge \Delta + 3$ if $(u, v) \in E$
- every 4-face has \leq one 3-vertex $\& \geq$ one \geq 5-vertex

forbidden configurations in a minimal counterexample

- $\delta \geq 3$
- $deg(u) + deg(v) \ge \Delta + 3$ if $(u, v) \in E$
- every 4-face has ≤ one 3-vertex & ≥ one ≥5-vertex

deg(v1) = deg(v3) = 4 à
deg(v2) = deg(v4) = 5
deg(v1) + deg(v3)
$$\leq$$
 9 à
deg(v2) + deg(v4) \leq 9

• cluster: a minimal set of 3-faces s. t. no other 3-face is adjacent to a 3-face in it

- cluster: a minimal set of 3-faces s. t. no other 3-face is adjacent to a 3-face in it
- size of a cluster: number of 3-faces of the cluster

every simple planar graph without 6-cycles is (Δ +1)-edge choosable

• cluster: a minimal set of 3-faces s. t. no other 3-face is adjacent to a 3-face in it

every simple planar graph without 6-cycles is (Δ +1)-edge choosable

• cluster: a minimal set of 3-faces s. t. no other 3-face is adjacent to a 3-face in it

every simple planar graph without 6-cycles is (Δ +1)-edge choosable

• cluster: a minimal set of 3-faces s. t. no other 3-face is adjacent to a 3-face in it

Thomassen 94: every planar graph is 5-choosable

Thomassen 94: every planar graph is 5-choosable

Voigt 93: examples of non-4-choosable planar graphs

Thomassen 94: every planar graph is 5-choosable

Voigt 93: examples of non-4-choosable planar graphs

characterizing 4-choosable planar graphs?

easy: every planar graph without 3-cycles is 3-degenerate à 4-choosable

G is d-degenerate if every subgraph H of G has a vertex of degree at most d in H

easy: every planar graph without 3-cycles is 3-degenerate

Wang & Lih 02:

easy: every planar graph without 3-cycles is 3-degenerate

Wang & Lih 02:

every planar graph without 5-cycles is 3-degenerate Fijavz, Juvan, Mohar & Skrekovski 02:

easy: every planar graph without 3-cycles is 3-degenerate planar graph without 4-cycles?

Wang & Lih 02:

every planar graph without 5-cycles is 3-degenerate Fijavz, Juvan, Mohar & Skrekovski 02:

easy: every planar graph without 3-cycles is 3-degenerate planar graph without 4-cycles?

line graph of dodecahedron

Wang & Lih 02:

every planar graph without 5-cycles is 3-degenerate Fijavz, Juvan, Mohar & Skrekovski 02:

easy: every planar graph without 3-cycles is 3-degenerate Lam, Xu & Liu 99:

every planar graph without 4-cycles is 4-choosable Wang & Lih 02:

every planar graph without 5-cycles is 3-degenerate Fijavz, Juvan, Mohar & Skrekovski 02:

easy: every planar graph without 3-cycles is 3-degenerate Lam, Xu & Liu 99:

every planar graph without 4-cycles is 4-choosable Wang & Lih 02:

every planar graph without 5-cycles is 3-degenerate Fijavz, Juvan, Mohar & Skrekovski 02:

every planar graph without 6-cycles is 3-degenerate

planar graph without 7-cycles? 3-degenerate?

easy: every planar graph without 3-cycles is 3-degenerate Lam, Xu & Liu 99:

every planar graph without 4-cycles is 4-choosable Wang & Lih 02:

every planar graph without 5-cycles is 3-degenerate Fijavz, Juvan, Mohar & Skrekovski 02:

every planar graph without 6-cycles is 3-degenerate

Choudum 77: for each $k \ge 7$

4-regular 3-connected planar graphs without k-cycles

easy: every planar graph without 3-cycles is 3-degenerate Lam, Xu & Liu 99:

every planar graph without 4-cycles is 4-choosable Wang & Lih 02:

every planar graph without 5-cycles is 3-degenerate Fijavz, Juvan, Mohar & Skrekovski 02:

every planar graph without 6-cycles is 3-degenerate

Conjecture (Wang & Lih 01 - Fijavz, Juvan, Mohar & Skrekovski 02) every planar graph without 7-cycles is 4-choosable

easy: every planar graph without 3-cycles is 3-degenerate Lam, Xu & Liu 99:

every planar graph without 4-cycles is 4-choosable Wang & Lih 02:

every planar graph without 5-cycles is 3-degenerate Fijavz, Juvan, Mohar & Skrekovski 02:

every planar graph without 6-cycles is 3-degenerate

Theorem (F 04)

every planar graph without 7-cycles is 4-choosable

minimum counterexample:

δ ≥ 4

- δ ≥ 4
- · has at most six blocks à at most six non-simple faces

- δ ≥ 4
- has at most six blocks à at most six non-simple faces

- δ ≥ 4
- · has at most six blocks à at most six non-simple faces

- δ ≥ 4
- · has at most six blocks à at most six non-simple faces
- any 5-vertex is incident to at most one bad face

minimum counterexample:

minimum counterexample:

minimum counterexample:

minimum counterexample:

minimum counterexample:

minimum counterexample:

minimum counterexample:

minimum counterexample:

suns

Charging:

```
ch(v) = 2deg(v)-6 vertex v

ch(f) = |f|-6 face f
```

Charging:

```
ch(v) = 2deg(v)-6 vertex v

ch(f) = |f|-6 face f if f is simple

ch(f) = |f|-6 + 3/2 if f is non-simple
```

Charging:

$$ch(v) = 2deg(v)-6$$
 vertex v
 $ch(f) = |f|-6$ face f if f is simple
 $ch(f) = |f|-6 + 3/2$ if f is non-simple

total charge
$$\leq \sum 2 \text{deg}(v)-6 + \sum \text{deg}(f)-6 + 6*3/2 = -3$$

 $v \in V$ $f \in F$

Conclusion 4-choosability of planar graphs

belief: can be extended to planar graphs without 8-cycles and to those without 9-cycles

find the maximum k s. t. every planar graph without k-cycles is 4-choosable

$$7 \le k \le 63$$

Mirzakhani 63

existence of a non-4-choosable planar graph of size 63