Algorithmic Behavior of DPLL on
Random XOR-SAT and a NP-Complete
Generalization of XOR-SAT

Presentation at the
Ontario Combinatorics Workshop
16 April 2005

Harold Connamacher

Department of Computer Science
University of Toronto

Overview

The Goal: Prove there is an exact threshold
in the clause density of random XOR-SAT
formulae (and a NP-complete generalization
of XOR-SAT) that distinguishes instances on
which DPLL using the unit clause heuristic
(DPLL+4+UC) will require exponential time to
find a satisfying assignment from instances
on which DPLL4UC will take linear time,
W.u.p.p.

kE-SAT

e n variables, each may be assigned O or 1
e given variable z, a literal is either x or =

e a clause is a set of k literals
ex: (z,7, 2)

Question: Is there an assignment of the
variables such that each clause has exactly
one true literal?

If “yes”, the formula is satisfiable (SAT).
If “no”, the formula is unsatisfiable (UNSAT).

Complexity results:

P if k=2

k-SAT € { NP-complete if k> 3

Some Definitions
All formulae considered will be uniformly
random (u.r.)
n: F variables
m:. F clauses
m = cn. assume m is linear in n

c IS the clause density

DPLL4+UC
At each step, DPLL:

e ASsigns a variable v a value

e Removes satisfied clauses

e Removes v from unsatisfied clauses
e Recurses on the subformula

e Backtracks on a contradiction
Heuristic for choosing the next variable:
Unit Clause (UC):

e If there is a clause of size 1, choose it.

e Otherwise choose a variable at random

The Satisfiability Threshold Conjecture

Does there exist c§ s.t. a random 3-SAT
formula on n variables and cn clauses is:

e a.5. SAT ife< c§
e a.S. UNSAT ifc> cg?

2-SAT: 5 = 1 (Chvatal, Reed '92; Goerdt '96;
Fernandez de la Vega '92)
k-SAT: Not known if ¢ exists, k > 2

’/

7

0 352 42 4506

Ratio of Clausesto Variables (c=m/n)
6

-

Probability of SAT

o

The (2 4 p)-SAT Model

A random SAT formula on a mixture of 2-
and 3-clauses where p is the proportion of
3-clauses.

e n variables

e m Clauses

e pm 3-cClauses

e (1 —p)m 2-clauses
Def: Call a clause of size 7 an :-clause.

Conjecture: (2 + p)-SAT has an exact
satisfiability threshold for each value of p.

Known Results

The running time of DPLL+UC on 3-SAT is
(w.u.p.p.):

e linear for < n clauses (chao, Franco '86)

e exponential for > 3.81n clauses (Achlioptas,
Beame, Molloy '01)

Satisfiability threshold for (2 + p)-SAT:

(Achlioptas, Kirousis, Kranakis, Krizanc '01)

e Exact threshold for p < 2.
e (1 —¢e)n 2-clauses + An 3-clauses is a.s.

o SAT ing% for any e > 0O
o UNSAT if A > 2.28 for some e >0

Conjecture: (1 —e)n 2-clauses + (% + 5) n
3-clauses is a.s. UNSAT (for any § there is e > 0) .
38

XOR-SAT

e A variation of SAT using “exclusive-or”.

e A clause is satisfied if exactly 1 or exactly
3 literals are true.

o For 3-XOR-SAT, there are 8 possible
constraints, corresponding the two
quasigroups (Latin squares) of size 2.

(z,y,%) (z,y,2)
(z,7,z2) (,7,%)
(T,y,2) (T,y,%)
(7,9,2 (7,7, 2)

0 1 0 1
0|0 1 0|1 O
111 0 110 1

e XOR-SAT is in P because it can be solved
by Gaussian elimination (modulo 2).

(k,d)-UE-CSP

e Constraints of size k
e Domain {0,...,d— 1}, d>?2
e Each constraint is uniquely extendible

o For any setting of kK — 1 variables in a
constraint, there is a unique value for
the kth variable

e For Kk = 3, each constraint is a quasigroup
of size d.

Complexity results:

P ifd <3

(3,d)-UE-CSP ¢ { NP-complete if d > 4

Threshold results: The exact satisfiability
threshold of:

e (3,d)-UE-CSP is .917935...

¢ (2,d)-UE-CSP is 3.

10

Relation to Graphs
We can model a formula as a hypergraph.

e Each variable is a vertex.
e Each clause is a hyperedge on its

corresponding variables.

The Random Model

e Choose a hypergraph on n variables and
m hyperedges, u.r.

e On each hyperedge, choose a quasigroup
of size d u.r. for its constraint.

11

Main Theorems

Theorem: On a u.r. instance of
(3,d)-UE-CSP with n variables and cn

clauses, DPLL+4UC will take (w.u.p.p.)

o linear time if ¢ < 2

e exponential time if ¢ > %

Theorem: A u.r. instance of UE-CSP with
(% — €)n 2-clauses and An 3-clauses is

e W.U.Pp.p. SAT it A< for any e > 0

kLN

® A.S. UNSAT if A > for some e > 0

12

Proof Steps

Start with a u.r. random (3,d)-UE-CSP
formula with n variables and ¢n clauses.

1. If ¢ < £, DPLL4UC will find a satisfying
assignment without backtracking

(w.u.p.p.)

2. If ¢ > £, DPLL4UC will produce a u.r.
subformula with n’ = an variables,

(% — e)n’ 2-clauses and (% + §)n’ 3-clauses
(w.u.p.p.)

3. Such a formula is a.s. UNSAT.

4. DPLL will require 292(n) steps to
backtrack out of this UNSAT subformula
(w.u.p.p.)

13

Step 1: Prove DPLL+4+UC will find a satisfying assignment
without backtracking if ¢ < 2, w.u.p.p.

Technique: Trace UC (i.e. DPLL4UC
without backtracking) with differential
equations. (Achlioptas, et al. '01)

BICs(t+1) ~ O3] = —> 20
BICo (1 +1) - o) = o2t 202()

C;(t) is the number of i-clauses after ¢
variables have been set.

Lemma: (wormald '95) Solving the differential
equations gives a.s.

C3(t) c3(0)(1 —t/n)> - n 4 o(n)
Co(t) = (c2(0) + 3c3(0)(t/n))(1 —t/n)? - n 4 o(n)

where ¢;(0) is the initial density of i-clauses

14

Step 1: Prove DPLL4+UC will find a satisfying assignment

without backtracking if ¢ < 2, w.u.p.p.

Lemma: Until DPLL4+UC backtracks, the
subformula produced at each step of the
algorithm is uniformly random.

Fact: DPLL only backtracks on a
contradiction.

Lemma: If for all steps 0 <t <tp, a.s.
Co(t) < (% — e) (n —t) then w.u.p.p.
DPLL+4+UC will reach step tg

without producing a contradiction and
w.u.p.p. there will be no unit clause at step
to, to = n — yn.

Pick v small enough that the formula induced
by the variables unassigned at step tg is
ueasyn .

15

Step 1: Prove DPLL+4UC will find a satisfying assignment
without backtracking if ¢ < %, w.u.p.p.

Cs(t) c3(0)(1 —t/n)3 - n+ o(n)
Ca(t) (clz(O) + 3¢c3(0)(¢/n))(1 — t/n)? - n 4 o(n)

Co(t) < <§—e> (n—1t)

Result 1: Set ¢3(0) = ¢, ¢»(0) = 0.

DPLL+UC does not produce a contradiction
(w.u.p.p.) ifc< %

Result 2: Set ¢3(0) = ¢p, c»(0) = (1 — p).

DPL L 4+UC does not produce a contradiction
(w.u.p.p.) on a u.r. instance with (3 — e)n
2-clauses and Bn 3-clauses if B < %.

16

Step 2: Prove ¢ > % implies DPLL+UC will produce a u.r.
subformula with n' = an variables, (5 — e)n' 2-clauses

and (¢ + 8)n' 3-clauses, w.u.p.p.

c3(0)(1 —t/n)3 - n+ o(n)

C3(t)
Ca(t) (612(0) + 3¢3(0)(t/n)) (1 — t/n)? - n 4 o(n)
Co(t) < (5 — e) (n—1t)

) > (c+8) (-1

Set ¢3(0) = ¢, ¢»(0) = 0.

If ¢ > 3, DPLL+UC will produce a formula
with the desired clause densities without
backtracking. Thus, the formula is u.r.
random.

17

Step 3: Prove a formula on (3 — e)n 2-clauses and (¢ + 6)n
3-clauses is a.s. UNSAT.

First Moment Bound: Count the expected
number of solutions of a u.r. formula with an
variables and gn clauses:

1\6n
E[# solutions] = d*" (E)

If B> «, E[# solutions] = o(1).

By Markov's Inequality, a formula is a.s.
UNSAT if 8 > «.

Goal: Find a u.r. subformula with more
clauses than variables.

18

Step 3: Prove a formula on (3 — e)n 2-clauses and (g + 6)n
3-clauses is a.s. UNSAT.

e A random formula with a linear number of
clauses has many variables of degree < 2.

e A clause with a variable of degree 1 can
always be satisfied.

e Variables of degree 0 are trivially
satisfiable.

Trim the variables of degree < 2 from the
formula to get the 2-core.

2-Core: The unique, maximal subformula
with minimal degree 2.

19

Step 3: Prove a formula on (3 — e)n 2-clauses and (g + 6)n
3-clauses is a.s. UNSAT.

Use a Branching Process to compute the size
of a 2-core. (tuczak '91, Molloy '04)

Idea: The probability a vertex is trimmed
when reducing to the 2-core is the probability
all but one child is trimmed.

Theorem: A u.r. formula with n variables,
con 2-clauses, c3n 3-clauses a.s. has a 2-core
with a(cp, c3) variables, B>(co,c3) 2-clauses
and B3(co,c3) 3-clauses where:

alcr,c3) = 1—e P —ge™ @
Ba(ea,e3) = ca(l —e %)?
B3(ca,c3) = c3(l—e™%)3

where z is the largest solution to

= (1-—e%)?3c34+ (1 —e%)2co.

Lemma: a(co,c3) < Ba(c,c3) + B3(co,c3) if
CQ=%—€ and C3=%+5.

20

Step 4: Prove DPLL will require exponential time to
backtrack out of an unsatisfiable u.r. formula F with
(3 — €)n 2-clauses and An 3-clauses, W.u.p.p.

The running time of DPLL on an unsatisfied

formula F' can be bounded by the resolution

complexity of F', the length of the shortest

resolution refutation of F.

e Resolution initially defined for CNF
boolean formulae

e Can adapt resolution to work on CSPs
(Mitchell '02)

21

Step 4: Prove an unsatisfiable u.r. formula F with (% — e) n
2-clauses and An 3-clauses has exponential resolution

complexity, w.u.p.p.

Exponential resolution complexity is a
consequence of the following three properties
holding a.s. for some «,(> 0. (Ben-Sasson,
Wigderson '01; Mitchell '02; Molloy, Salavatipour '03)

(a) Every subproblem on at most an variables
is satisfiable.

(b) Every subproblem on v variables,
Lan < v < an, has at least (n variables of

2
degree < 1.
(c) The problem is extendible

If (a)-(c) hold, DPLL will require 253(") steps
to show the subformula is UNSAT.

22

Prove:

(a)
(b)

Every subproblem on at most an variables is satis-
fiable.

Every subproblem on v variables, 2an < v < an, has
at least {n variables of degree < 1.

Find a configuration that exists in every
formula that has few variables of degree
< 1.

o Note: A minimal unsatisfiable formula
must contain this configuration.

Prove there a.s. can not be such a
configuration on < an variables.
(Markov's Inequality)

Prove that if there is no such
configuration on Zan < v < an variables
then there is a linear number of variables

of degree <= 1. (Chebyshev’'s Inequality)

23

