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Applied Mathematics
= Modeling + Mathematics

L’étude approfondie de la Nature est la source la plus feconde des
decouvertes mathématiques. Non seulement cette étude, en offrant aux
recherches un but determiné, a l'avantage d'exclure les questions
vagues et les calculs sans issue : elle est encore un moyen assuré de
former l'Analyse elle-méme, et d'en decouvrir les eléments qu'il nous
importe le plus de connaitre, et que cette science doit toujours

conserver : ces élements fondamentaux sont ceux qui se reproduisent
dans tous les effets naturels.

J. Fourier,1807

Understand particular phenomenon
and extract general mathematical principles
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This example

I[. Modeling

Theme: Decision-making under uncertainty
Physical example: Glider racing
Modeling challenge: Certain future vs. uncertain

[I. Mathematics

Math difficulty: Non-smooth solutions
Solution technique: viscosity solutions
Common features with other problems
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Decision making under uncertainty

= Finance (investment, hedging, ...)
market motions are uncertain
“efficient market hypothesis™:
completely unpredictable

= Sport (sailboat and glider racing)
atmospheric conditions uncertain
partial information
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If you don’t find a thermal ...
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- computers”
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Soaring competition
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Need for math modeling

= Distances are far
= Speed 1s important even 1f not racing
= On-board computation is available

= History of quantitative modeling
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Optimization with known lift

Paul MacCready, Soaring 1955

Weak thermals
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MacCready construction

draw tangent to graph
of aircraft performance
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MacCready value
m = strength of next thermal in range
e Minimum lift to accept
e Optimal speed in varying lift I(x): v = v«(m-I(x))
(Fly slow in lift, fast in sink)
m is a control input to flight computer

S~—
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m = “speed to fly”

optimal speed as function
of m and local lift
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A Stochastic Cross-Country or Festina Lente
A.W.F. Edwards, Sailplane and Gliding 1963

‘A stochastic cross-country? What does “stochastic” mean?’

‘It means there is an element of chance in the flight:
you might not reach your goal.’

“Every cross-country pilot knows that his primary task is to stay up... Much is

known about Stochastic Processes nowadays, and in this article I want to
introduce them to gliding in a very simple example: so simple, in fact, as to
be rather unrealistic. But one has to start somewhere.

“My rate of climb in thermals will be u ft/sec. No down between
thermals... The distance between adjacent thermals is a random variable, x,

which is evidently exponentially distributed with probability density (1/d)
exp(-x/d).”
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The Efficient Frontier of Optimal Soaring

(like efficient frontier of investment)

For condifions, see fext 40 (Speed for best
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MacCready Theory with
Uncertain Lift and Limited Altitude

John H. Cochrane, Technical Soaring 1999
Myron S. Scholes Professor of Finance, University of Chicago

“Given a MacCready ring setting, every textbook tells you how to fly. Much of
the mystery, challenge, and art of cross-country thermal flying comes down

to a judgement what that setting should be. What setting should you use,
given the fact that the strength and position of thermals 1s uncertain, and
you may not have enough altitude to reach them before running into the
ground?”
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Range, but slow if
you da_find lift

3 Good speed if you do,
Fast, but no range ood range if you don't

if you don't find lift

Cochrane: m depends on distance and altitude
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Our model

Optimal Soaring via Hamilton-Jacobi-Bellman Equations
Robert Almgren and Agnes Tourin, 2004

= Stochastic model for atmosphere
= Penalty for landout

» Minimize expected time to finish
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Dynamic Programming

T(x,z) = time to reach x=0

T(x+Ax,z) = min( T(x,z) +
time to travel Ax

Partial differential equation
for T(x,z)

v=0T/0x enters nonlinearly

altitude

Z:

/T = landout penalty

x = distance to finish
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3 GIider trajectory
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[I. Mathematics

= Why 1s this problem challenging?

he solution is not smooth

he differential equation does not hold!

VAN
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The machinery of viscosity
solutions

= It has been developed in the past 20 years
by a group of researchers.

= The theory is based on an “order-

perserving” principle.
= In the glider problem:

The bigger the penalty is, the bigger the
time to finish!
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Giving a meaning to the equation

= The theory provides a notion of solution.

m It turns out that this solution is indeed the
correct physical solution.

= Last but not least, this solution can be
computed!
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The algorithm

= A naive algorithm fails: it is unstable or
does not pick the correct solution.

= Our algorithm satisfies the same order-
preserving property as the equation.
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Other applications

= The theory of viscosity solutions has a
very broad range of applications.

= Examples: finance, economics, turbulent
flame propagation, image processing.
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Common features for all these
problems

= The order-preserving principle
= Nonlinear equation in the gradient
= Toy example: the eikonal equation
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The Eikonal equation

lu/(x)] =1 on [0, 1]
el =il =10

\ u(x)

Nov 7, 2004 Royal Canadian Institute




The Eikonal equation

= Solution u(x) is the distance to the
boundary of the interval [0,1] (distance to
0 or 1, depending on which one is smaller)
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Turbulent flame propagation
Anne Bourlioux (Univ. Montreal)

> 1.0031

0.7531
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Turbulent flame propagation
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Shape from shading

Elisabeth Rouy, Olivier Faugeras, Emmanuel
Prados (France)

They reconstruct a three-dimensional
surface from a single two-dimensional
image.
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Reconstruction of a face from a
real photograph
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Conclusions

= We solved a problem coming from the real
world with sophisticated mathematical
techniques developed in the last 20 years.

= The two remaining difficulties for treating
this type of problem:

No “ready to use” tool available.
The curse of dimensionality
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