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Gradient Flows

An equation
u; = F(z,t,u, Du, D%u,...)
is the gradient flow of the energy

E(u) = /G(a:,u, Du,...)

with respect to inner product < -, - > if

OF
< Up,V >= —3——['0] VY v — test function.
U

Example. Heat equation
ur = ANu

is the gradient flow of the energy
1
E(u) = —/lV'u|2
2
with respect to L2 inner product

<wvi,v2 >= /’Ul V2.



Gradient flows wrt Wasserstein metric

Otto, Denzler and McCann, Carlen and Gangbo, Carrillo, Villani...

Example. Porous medium/ fast diffusion equation

up = Au™ on R? x [0,00) for 'm>d_|_2

is a gradient flow of the energy

E(u)—{mlfu ifm#1
Julnu ifm=1

with respect to metric that for zero mean functions v1 and
vo iS given by

< v1,v2 >u= /'u,Vp1 - Vp2

where p; solves
—V - (uVp;) = v; for i =1, 2.

e Functions u belong to

M={u : uZO,/u=M>O,/w2u<oo}.

o (M,< -,- >y) is a manifold.
e The induced distance is the Wasserstein distance:

d(ul,uz)z— inf /ICD(:I:) — z|%uy(z)dz

DPypu;=u



Long-time asymptotics

Friedman and Kamin, Vazquez, Carrillo, Markowich, Lederman, Toscani,
Del Pino and Dolbeault, and using gradient flow approach Otto, Den-
Zler and McCann...

The equation
ur = Au™

possesses selfsimilar (Barenblatt) solutions when m > d—‘f.
In particular

U(z,t) = t7% p(xt™)
where a = 1/(dm — d + 2) and

1— 1/(m—1)
m|w|2) .
2m +

o) = (oo

Barenblatt solutions describe the long-time shape of solu-
tions of the equation in the sense that

||U(',t)—U(',t)||L1(Rd)-—-)O as t — oo.

Q: What is the rate of convergence?



Optimal rate of convergence

Similarity variables: Rescale the horizontal and vertical di-
rections so that selfsimilar solution becomes a stationary
one.

u(z,t) =t w(zt ™ alnt)
It satisfies the equation
wi = Aw™ + V - (zw)
which is a gradient flow of the energy

_ 1 1
E(w) = /m — 1wm - Emzw

e Form > 5"—5-1- this functional is geodesically convex (Mc-
Cann) on (M,< -, >), meaning that for every arc-
length parameterized geodesic v(s), E(y(s)) is a con-
vex function.

Otto used the measure of convexity of E to obtain
optimal rates of convergence of w toward p.

e For m < 1, Denzler and McCann have linearized the
equation at p. The linearized dynamics at a fixed point
is governed by the Hessian of E, which is always sym-
metric! They computed the full spectrum and hence
a prediction for optimal rates of convergence.

o For m € (3%5,%5%) McCann and S. showed that along

solution curves the energy is eventually convex and
obtained almost optimal rates of convergence.

e For m € (432, 7%5) Kim and McCann have established
optimal rates of convergence.



Long-wave unstable thin-film equations

(UTFE) ur = — (U uzzz)z — (W uz)z on R x [0,T]
LLs L L L L L L L0 L L L

7

T

e UTFE describe the evolution of a thin layer of fluid
under the effects of destabilizing forces, like gravity.

e UTFE preserves the mass and nonnegativity of initial
data.

e UFTE is a gradient flow of the energy

— _]; 2 1 m—n-+2
E(u)—/Qum (m—n+2)(m—-n+1)u

with respect to the inner product given by

< v1,V2 >Su= /unvpl - Vp2

where p; solves —V - (u"Vp;) = v; for i = 1,2.



Dynamics of UTFE

- Ut = —(unuzxx)x - (umum)x
Q: When are the stabilizing and destabilizing forces in bal-
ance?
l
Loy
< 5 Hn+1 ,
‘ (unuzxz‘)m ~ 14 = gnt>
) Hm—l—l 7
H (u™ug)z ~ 12 = H™13

in balance if | m=n+42

e If m < n+ 2 Bertozzi and Pugh have shown that weak
solutions exist for all time

e If m = n 4 2 selfsimilar source-type (spreading) so-
lutions exist for 0 < n < 3 (Beretta) and selfsimilar
blowup solutions exist when 0 < n < 3/2 (Pugh and
S.).

‘ W/
sl - by
Huge bunp hulti -bvmp

e If m > n+ 2 it is conjectured (Bertozzi and Pugh)

blowup is possible. The conJecture has been proven
forn=1



Stability of steady states when n=1

df‘@ @ (375 ai?zi vop ’g“{‘ Cely ;i guv g/‘:c{f‘!‘@«"?

e The linear stability can be obtained from Hess E at
n. Since the Hessian is symmetric its eigenvectors and
eigenfunctions can be determined from the quadratic
form H(v) = Hess E(v,v).

e The construction of the inner product on M suggests
the use of particular coordinates on T'M.

v— f where — (nf)s =

Then the metric on the space of functions f is weighted
L2 inner product < fi, f2 >= [ nfife.

e Geodesic in the direction f is v(s) = (Id + s f)#n-.
. _Ew(s»"_/“_m—s bt 2 / .

e f =1 corresponds to translations; H(1)=0

e f = x corresponds to dilations

— If m > 3 then H(z) < 0 — an unstable direction
— If m = 3 then H(z) = 0 — a neutral direction

— If m < 3 then H(x) > 0 and moreover H(f) > A >0
for all f such that < f,1 >=0.



Stability of selfsimilar solutions when n =1 and m =3

e All droplet steady states have the same mass, denote
it M.

e Initial data with mass less than M, do not blow up.

e Spreading selfsimilar solutions are linearly stable.
Stability of blowup profiles p

e In similarity variables the equation becomes:

Tw
wt = — ('w'wa:a:a: + 'w3'w::: + _‘) .
572

e it is a gradient flow of energy

2
W
—/ w? ———w 4~ _d=x.

10
e Hessian quadratic form is:
2020 4 L 1
5 || 5
e Note that H(1) < 0 and H(z) < 0.

e For single-bump profiles p that have been constructed
H(f) > XA > 0 for all f such that < f,1 >= 0 and
< f,x >=0.

e For multi-bump profiles there exist other unstable di-
rections.



Future directions and open problems

Oon

dynamics of UTFE
Linear stability of selfsimilar solutions when n # 1.
Asymptotic stability.

Show that blowup is possible when m > n 4 2 (known
when n = 1)

Show that blowup is generic when in the critical case
m = n + 2 when the mass is greater then M,

When m < n+2 the solutions are expected to converge
to a configuration of droplets. Prove and determine
the configuration.

gradient flows wrt Wasserstein distance

Higher order asymptotics for porous medium and fast
diffusion equations

Convexity of higher order functionals. An interesting
example (on the space of periodic functions in R):

1
E(u) =/ u®u2 dx
0

with o € [-5,—4] is geodesically convex.



