

One of the central issues of dynamical systems

Existence, persistence and break-up of invariant tori for flows, on which motion is conjugate to a rigid rotation. Renormalization is a non-perturbative technique which allows to study these questions.

- Diophantine property on the rotation vector:

$$|w \cdot \nu| \ge \frac{\text{const}}{|\nu|^k} \text{ for all } \nu \in \mathbb{Z}^d - \{0\}, \quad k \ge 1,$$

and isoenergetic non-degeneracy:

$$\left| \det \begin{bmatrix} \partial_i \partial_j H \ \partial_i H \\ \partial_j H \ 0 \end{bmatrix} \right| \ge \kappa > 0 \quad \text{on the torus,}$$

appear as conditions for robustness of invariant tori.

 Case of isoenergetically (non-twist) degenerate Hamiltonian flows with shearless tori is notoriously harder.

· Observation of universality in non-twist area-preserving maps

(P. Morrison et al.)

Area-preserving $f: \mathbb{T} \times \mathbb{R} \mapsto \mathbb{T} \times \mathbb{R}$

$$\partial_p q' = 0$$
, where $(q', p') = f(q, p)$.

Example: non-twist Arnold two-parameter family $T_{\omega,\epsilon}$

$$q_{n+1} = q_n + \omega(1 - p_{n+1}^2)$$
$$p_{n+1} = p_n - \epsilon \sin 2\pi q_n$$

The twist condition is violated along the curve $p = -\epsilon \sin 2\pi q$.

Bifurcations of invariant tori in two-parameter families of maps:

Claim 1. (A. Delshamps, R. De la Llave (2000))

Let $\omega_0 = (\sqrt{5} - 1)/2$. Then, for $|\epsilon| << 1$ there is a smooth curve $\omega(\epsilon)$ with $\omega(0) = \omega_0$, such that

- a) if $\omega > \omega(\epsilon)$, then $T_{\omega,\epsilon}$ admits two invariant circles with rotation number ω_0 ,
- b) if $\omega < \omega(\epsilon)$, then $T_{\omega,\epsilon}$ admits no invariant circles with rotation number ω_0 ,
- c) if $\omega = \omega(\epsilon)$, then $T_{\omega,\epsilon}$ admits one shearless invariant circle with rotation number ω_0 .

This claim has been proved for a class of families, "similar" to $T_{\omega,\epsilon}$.

- Phase space universality: $\frac{a_k}{b_k}$ -periodic orbits accumulate on the golden invariant curve at the break up at a geometric rate:

$$\operatorname{dist}(\gamma_k - \gamma^*) \simeq \alpha^{-k}, \ \alpha > 1$$

- Parameter space universality: parameter values (ω_k, ϵ_k) for which $\frac{a_k}{b_k}$ -periodic orbits of a fixed stability are on the verge of destruction accumulate on $(\epsilon_{\infty}, \mu_{\infty})$ geometrically with two rates: $\delta_1 = 2.678$ and $\delta_2 = 1.583$.

• Renormalization explanation of universality

- $-\mathcal{A}$, a Banach space;
- $-B\subset\mathcal{A}$, open;
- $-\mathcal{Y}, \dim(\mathcal{Y}) = n;$
- $-F: B \mapsto \mathcal{Y}$, an observable;
- a "natural" map r on a countable $Y \subset \mathcal{Y}$, with an orbit $\{y_k\}_0^\infty \subset Y$.

- Level sets of F equivalent objects.
- $-\exists$ a submnfd $\mathcal{W} \in \mathcal{A}$, s.t. $F^{-1}(y_k) > \mathcal{W}$ at a geometric rate.
- Construct $\mathcal{R}: B \mapsto \mathcal{A}$ with a hyperbolic fixed point and \mathcal{W} as its stable mnfd, s. t.

$$F(\mathcal{R}(h)) = y$$
, whenever $F(h) = r(y)$,

- The convergence of $F^{-1}(y_k)$ is governed by the largest eigenvalue of \mathbb{R} .

• Renormalization of Hamiltonian Flows (H. Koch et al.)

- Objects of renormalization: Hamiltonian functions H(q,p) in 2d variables, analytic on a subset of \mathbb{C}^{2d} , generating a flow through

$$i_v \omega_2 = -dH$$
 or $\frac{\partial}{\partial t}(q(t), p(t)) = \mathbb{J}(\nabla H)(q(t), p(t)),$

where ω_2 is the sympl. form in $\mathbb{T}^d \times \mathbb{R}^d$ and $\mathbb{J} = \begin{bmatrix} 0 & \mathbb{I} \\ -\mathbb{I} & 0 \end{bmatrix}$.

- Observable: normalized rotation vector $w \in \mathbb{R}P^d$.

Given an integral $d \times d$ matrix T, such that

- a) T has a simple eigenvalue ϑ , $|\vartheta| > 1$, $T\omega = \vartheta \omega$;
- b) other eigenvalues are inside the unit circle, simple, non-zero;
- c) $\det T = \pm 1$;

starting with $\omega_0 \in \mathbb{R}^2$, $\omega_0 \cdot \omega \neq 0$, one can construct a sequence of normalized "rational" approximates of ω : $\{T^k\omega_0\}_0^{\infty}$.

Renormalization operator:

$$\mathcal{R}(H) = H \circ T_1 \pmod{\mathcal{G}},$$

where

- $-T_{\mu}(q,p)=(Tq,\mu(T^*)^{-1}p), \text{ with } \mu\in\mathbb{C};$
- G is (ideally) a group of transformations that acts on Hamiltonians, preserving the rotation numbers of the orbits.

Motivation: A Hamiltonian $\mathcal{R}(H)$ has an orbit with a rotation vector cw whenever H has an orbit with Tw.

- Specifics for d=2 (H. Koch, D. Gaydashev)
 - Objects of renormalization:

Let $\omega = (1/\theta, 1)$, where θ is a quad. irrational, $\Omega = (-1, 1/\theta)$.

Let ω' and Ω' - multiples of ω and Ω , $\omega \cdot \omega' = 1$ and $\Omega \cdot \Omega' = 1$.

Given a pair $\rho = (\rho_1, \rho_2)$ of real positive numbers, define

$$\mathcal{D}_1(\rho) = \left\{ q \in \mathbb{C}^2 : |\Im(\omega' \cdot q)| < \rho_1, |\Im(\Omega' \cdot q)| < \rho_2 \right\},\,$$

$$\mathcal{D}_2(\rho) = \left\{ p \in \mathbb{C}^2 : |\omega \cdot p| < \rho_3, |\Omega \cdot p| < \rho_4, \right\}.$$

Given a quadruple $\rho = (\rho_1, \rho_2, \rho_3, \rho_4)$ of real positive numbers, define

$$\mathcal{D}(\rho) = \mathcal{D}_1(\rho_1, \rho_2) \times \mathcal{D}_2(\rho_3, \rho_4).$$

Definition 2. Define $A(\rho)$ to be the Banach space of all analytic functions on $D(\rho)$, which extend continuously to the boundary of $D(\rho)$, of the form

$$H(q,p) = \sum_{\nu \in \mathbb{Z}^2, k \in \mathbb{N}, n \in \mathbb{N}} H_{(\nu,k,n)} e^{i(\nu \cdot \omega x + \nu \cdot \Omega y)} (\omega \cdot p)^k (\Omega \cdot p)^n,$$

for which the norm

$$||H||_{\rho} = \sum_{\nu \in \mathbb{Z}^2, k \in \mathbb{N}, n \in \mathbb{N}} |H_{(\nu,k,n)}| e^{|\nu \cdot \omega|\rho_1 + |\nu \cdot \Omega|\rho_2} \rho_3^k \rho_4^n$$

is finite.

Elimination of the irrelevant degrees of freedom

Notice: the norm of the components of the Fourier-Taylor expansion 'aligned' with ω grows under T_1 .:

Definition 3. Given real positive numbers σ , κ_3 and κ_4 define the **non-resonant** and **resonant** index sets

$$I^{-} = \{ (\nu, k, n) \in \mathbb{Z}^{2} \times \mathbb{N}^{2} : |\omega \cdot \nu| > \sigma |\Omega \cdot \nu|, |\omega \cdot \nu| > \kappa_{3} k$$
 and $|\omega \cdot \nu| > \kappa_{4} n \},$

$$I^{+} = \mathbb{Z}^{2} \times \mathbb{N} \times \mathbb{N} \setminus I^{-}.$$

Theorem 4. Given a quadruple ρ there exists a choice of $\rho' < \rho$, σ , κ_3 and κ_4 , a non-empty set $\mathcal{H} \in \mathcal{A}(\rho)$ containing $H^0 = \omega \cdot p$, and a map \mathcal{N} that assigns to each $H \in \mathcal{H}$ a canonical transformation \mathcal{U}_H from $\mathcal{D}(\rho')$ to $\mathcal{D}(\rho)$, such that

$$H \circ \mathcal{U}_H \in \mathcal{A}(\rho'), \quad \mathbb{I}^- H \circ \mathcal{U}_H = 0.$$

The map \mathcal{N} is analytic from \mathcal{H} to $\mathcal{A}(\varrho')$. Furthermore, if $H \in \mathcal{H}$ satisfies $\mathbb{I}^-H = 0$.

- Compactness

Theorem 5. There exists a choice of renormalization parameters for which $H \mapsto H \circ T_{\mu}$ is a compact linear map from $\mathbb{I}^+ \mathcal{A}(\rho')$ to $\mathcal{A}(\rho)$ of norm less or equal to one.

Renormalization operator

Definition 6. Given a four-vector ρ , define

$$\Re(H) = \frac{\vartheta^3}{\xi \eta} \left(\hat{H} \circ T_{\vartheta^{-2}} \circ S_{\eta} - \epsilon \right),$$

$$\hat{H} = H \circ \mathcal{U}_H \circ R_t,$$

$$R_t(q, p) = (q, p + t\Omega),$$

$$S_{\eta}(q, p) = (q, \eta p).$$

where ξ , η , t and ϵ are chosen from the normalization conditions:

$$(\mathfrak{R}(H))_{(0,0,1,0)} = 1,$$

 $(\mathfrak{R}(H))_{(0,0,0,3)} = \pm \gamma, \ \gamma > 0$
 $(\mathfrak{R}(H))_{(0,0,0,2)} = 0,$
 $(\mathfrak{R}(H))_{(0,0,0,0)} = 0.$

Fixed points

R has a period two simple fixed point

$$(H_{+}^{3} = \omega \cdot p + \gamma(\Omega \cdot p)^{3}, H_{-}^{3} = \omega \cdot p - \gamma(\Omega \cdot p)^{3}).$$

The rotation vectors of these integrable flows are given by

$$w = \frac{1 \pm 3\gamma (\Omega \cdot p)^2 \vartheta}{\vartheta \mp 3\gamma (\Omega \cdot p)^2}$$

Analyticity and compactness

Theorem 7. \exists *nbhds* $\mathcal{B}_{\pm} \subset \mathcal{A}(\rho)$ *of* H^3_{\pm} , *such that the operator* \Re *is well-defined, analytic and compact as a map from* $\mathcal{B}(b)_{\pm}$ *to* $\mathcal{A}(\rho)$.

Linear analysis at the simple fixed point

 \mathfrak{R} is hyperbolic at H^3_{\pm} with one unstable direction spanned by $\omega \cdot p$ and has a stable manifold \mathcal{W}^3_s of codimension one.

• Bifurcations and shearless invariant tori (H. Koch, D. Gaydashev)

Consider the unstable family:

$$F^*(\alpha) = H_+^3 + \alpha(\Omega \cdot p), \quad w(\alpha) = \frac{1 + (\alpha + 3\gamma(\Omega \cdot p)^2)\vartheta}{\vartheta - (\alpha + 3\gamma(\Omega \cdot p)^2)}$$

A family $F: \mathbb{C} \mapsto \mathcal{A}(\rho)$ is said to be **real** if the map $(\alpha, q, p) \mapsto F(\alpha)(q, p)$ takes real values when restricted to real arguments. Similarly for a torus map $\Gamma_H: \mathcal{D}_1(\rho_1, \rho_2) \mapsto \mathcal{D}(\rho)$.

Theorem 8. $\exists \mathcal{D}_{\delta} \ni 0 \text{ in } \mathbb{C}$, a nbhd \mathcal{U} of F^* and an analytic $F \mapsto \alpha_F$ from \mathcal{U} to \mathcal{D}_{δ} , such that the following holds for every family $F \in \mathcal{U}$ and $\alpha \in \mathcal{D}_{\delta}$.

a) \exists a complex nbhd \mathcal{D} of \mathbb{T}^2 , and two torus maps $\Gamma^0_{F(\alpha)}$ and $\Gamma^1_{F(\alpha)}$, analytic on \mathcal{D} , and satisfying

$$(\mathbb{J}\nabla F(\alpha)) \circ \Gamma_{F(\alpha)}^{i} = c \,\omega \cdot \nabla_{q} \Gamma_{F(\alpha)}^{i}. \tag{1}$$

The torus maps are distinct if $\alpha \neq \alpha_F$ and coincide if $\alpha = \alpha_F$.

- b) The torus $\Gamma^0_{F(\alpha_F)}$ is shearless (in a proper sense).
- c) If F is real and α belongs to the interval $(-\delta, \alpha_F]$ the torus maps $\Gamma_{F(\alpha)}^i$ are real.
- d) If F is real and $\alpha \in (\alpha_F, \delta)$ the torus maps $\Gamma_{F(\alpha)}^i$ are not real. For every such F and $\alpha \ni a$ nbhd $\mathfrak{D} = \mathfrak{D}(\alpha, F)$ of \mathbb{T}^2 in \mathbb{C}^4 , such that the range of both $\Gamma_{F(\alpha)}^0$ and $\Gamma_{F(\alpha)}^1$ is contained in \mathfrak{D} and there exist no real torus map satisfying the equation (1) with the range in \mathfrak{D} .

- Renormalization at criticality and break-up of the invariant ω -tori (H. Koch, D. Gaydashev)
 - Numerical implementation of renormalization

$$H(q,p) = \omega \cdot p + \sum_{(\nu,k)\in I} H_{\nu,k} e^{i\nu \cdot q} (\Omega \cdot p)^k,$$

$$\omega = (1/\vartheta, 1), \ \Omega = (-1, 1/\vartheta) \text{ and } \vartheta = \frac{\sqrt{5} + 1}{2},$$

$$T = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \ T\omega = \vartheta \omega, \ T\Omega = -\frac{1}{\vartheta} \Omega$$

"Obvious" symmetries:

$$\mathcal{J}H = -H$$
, here $\mathcal{J}H(q,p) = H(-q,-p)$.

– Cut-offs:

$$|\nu_1| + |\nu_2| \le N_1$$
, $k \le N_2$, $|\nu_1| + |\nu_2| + k \le N_3$, $N \in \mathbb{N}^3$.

- Period six: for some of the better Hamiltonians on the critical stable manifold, $\mathcal{R}^{n+6}(H)$ was noticeably similar to $\mathcal{R}^n(H)$, modulo a translation \mathcal{J}_{α} , where

$$\mathcal{J}_{\alpha}H = H \circ J_{\alpha}, \qquad J_{\alpha}(q, p) = (q + \pi \alpha, p),$$

with α a vector from $A = \{(1,0), (0,1), (1,1)\}$. Hence, \mathcal{R}^{12} was substituted by $\mathcal{J}_{\alpha} \circ \mathcal{R}^{6}$.

- Symmetries: H_n^* is invariant under $S_{-1} \circ \mathcal{J}_{\alpha}$.

- Critical scaling parameter: $\bar{\mu}^6 = \mu(H_0)\mu(H_1)\cdots\mu(H_5)$.

N	$\bar{\mu}$	$\delta_1^{1/6}$	$\delta_2^{1/6}$
(7, 7, 9)	0.36546	2.6620	1.5850
(12, 8, 14)	0.36594	2.6613	1.5850
(16, 8, 18)	0.36589	2.6612	1.5850

Eigenvalues describe the accumulation of the bifurcation points of orbits in two parameter families of Hamiltonians.

- Eigenvalues of the scaling transformation at the symmetry point (0,0): $(\vartheta/\bar{\mu})^{12}H_n^* \circ \Lambda_n = H_n^*$, $\Lambda_n = T_{\mu(H_n)} \circ U_{H_n} \circ \ldots \circ T_{\mu(H_{n+11})} \circ U_{H_{n+11}}$.

N	$\lambda_1^{1/12}/\vartheta - 1$	$\lambda_2^{1/12}$	$(\lambda_2\lambda_3)^{1/12}/\bar{\mu}-1$	$\vartheta \lambda_4^{1/12} / \bar{\mu} - 1$
(7, 7, 9)	5.2×10^{-12}	0.65643	0.016	-4.1×10^{-11}
(12, 8, 14)	5.2×10^{-12}	0.65704	0.017	-2.2×10^{-11}
(16, 8, 18)	5.2×10^{-12}	0.65694	0.017	5.6×10^{-11}

Figure 1: Orbits for the return map to the cylinder $q_2 = 0$ for a critical Hamiltonian at energy zero.

Conclusion:

Renormalization is a successful non-perturbative alternative to perturbative KAM techniques and (probably) the only hope for a rigorous explanation of the universality of critical phenomena in degenerate Hamiltonian flows.

Open (and very hard) questions:

- 1) A (computer-assisted ??) proof of existence of the period 12.
- A (computer-assisted ??) proof of the hyperbolicity of the renormalization operator at this period 12.
- 3) Do 1) + 2) imply the Greene's criterion for existence of an invariant surface?