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Motivation:
! Recent advances in wave sensing, nonlinear wave modeling, 

and high performance computing, have made it possible to 
perform large-scale phase-resolved simulations of nonlinear 
wave-fields to obtain practically useful deterministic 
reconstruction and forecasting.

Objective/Applications:
! Provide framework for assimilation, integration and optimal 

deployment of wave sensing systems.
! Direct phase-resolved deterministic prediction of wave-field  

evolution.
! Automated steering and deterministic path planning of 

manned and unmanned surface vehicles to achieve �severe 
weather automated/assisted ship handling� (SWASH).
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Approach
" Extend high-order spectral (HOS) method (mode coupling approach 

using arbitrary large number of modes N and nonlinearity order M; 
exponential convergence and almost linear computational effort with M 
and N) for simulation of ocean wave-field evolution to include:
! finite depth and variable bottom topography
! variable ambient current
! dissipation due to wave breaking
! so far not modeled: wind forcing, bottom friction and viscous effects

" Reconstruct nonlinear ocean wave-field using multi-level optimization 
scheme
! arbitrary order of nonlinearity
! scalability for high performance computing
! straightforward extension to multiple hybrid wave measurement data

" Implement HOS wave model on high performance computing platforms
for large-scale simulations
! L2~O(103-4 km2), T~O(103-4 sec.); (N~O(106-8); M~O(3-5)). 



Comparison to Exact Stokes Waves 
(Dommermuth & Yue 1987) 

# Exponential Convergence with N & M 

Maximum absolute error in vertical surface velocity:



Long-Time Evolution of Nonlinear Wavetrain
(Dommermuth & Yue 1987)   

Steepening Stokes wave: Steepening/breaking wave packet:

Experiment
(Su 1982)

Simulation

Energy dissipation due to wave breaking: 



Comparison with Experiment�Wave Breaking
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Nonlinear Wave-Bottom Interaction
(Liu & Yue 1998) 

#Waves traveling over near-shore variable bottom topography may result in strong 
nonlinear wave-bottom  interactions  

#Distinctive forward and reflected (Bragg-like) wave signatures associated with 
characteristics of wave-field and bottom topography
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Comparison of Linear and Nonlinear Wave Reflection 
in Opposing Variable Current
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Deterministic Wave Reconstruction/Forecasting
Using Composite Sensing Data

Nonlinear Ocean Wave-Field

Wave Probe Records
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Assumptions

� Wave spectrum is frequency band and directional 
spreading limited (ω∈(ωmin,ωmax); θ∈(-π/2,π/2)).

� No assumption of stationarity (in time) or 
homogeneity (in space) of the wave statistics.

� Measurement data is exact (error analysis has been 
performed using direct simulation Monte Carlo and 
polynomial chaos).

� No wind forcing, bottom friction and viscosity (so 
far).



Deterministic Wave Reconstruction 
Using Direct Multi-level Nonlinear Wave Prediction Models

Measured hybrid 
wave sensing data

Wave-field description in terms 
of interacting free wave modes
(direction, amplitude, phase) 
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Comparison with Experiment
– Nonlinear Long-crest Wave Reconstruction

ka =0.23

wave

A
B

C

t

x

T

A

B

C

Experiment (TAMU, 2000) Reconstruction

Predictable regionData used in reconstruction



Nonlinear Effect on Space-Time Predictable Region

wave

� Nonlinearity increases the predictable region by making the group 
velocity of different wave components closer to each other



Comparison with Experiment – Wave Kinematics
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Comparison with Experiment – Wave Forces

Experiment (Stansberg, 1995) HOS (M=4)
Linear Second-order

Horizontal force on a vertical truncated cylinderdz
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Wave nonlinearity is critical for deterministic reconstruction/forecasting:
! (even) for relatively moderate seas
! for large space-time evolution (nonlinear phase speeds & resonances)



Reconstruction and Forecasting of Long-Crested Irregular Waves
Used: 3 minutes (0-180 sec) of probe data at A

Forecast/Comparison: Wave elevation at downstream locations B (+500m) and C (+1 km)
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Unidirectional wave Unidirectional wave: in x-y space at time τ

Waves propagating in two directions:
Positive-x direction and θ direction
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wave hindcasting reconstruction forecasting

Elevation data given at a single point: η(x=0, y=0, t∈ [0,T0])

Space-Time Predictable Region for Short-Crested Waves



Reconstruction of a short-crested wave-field using 
multiple probes
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Comparison with Experiment
– Reconstruction of Nonlinear “Bull’s Eye” Wave-field

Snapshot of Bull’s Eye Wave in Wave Basin 
(TAMU, 1999)

Reconstructed Nonlinear Wave-Field

Sample Wave Record Used in Wave-Field Reconstruction Comparison of HOS-Predicted and Measured Wave 
Time Record
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Reconstruction and Forecasting of Short-Crested Irregular Waves 
Using 13 moving probes: reconstruct a 10km × 3km wave-field around A

forecast wave-field in a region around B   
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Simulation of Large-Scale Nonlinear Ocean Wave-Fields 
using High-Performance Computing (HPC)

• High scalability on modern 
high-performance parallel 
platforms (IBM SP3, Cray T3E)

• Up to 256 processors 
deployed to date; use of 
O(2000) processors in the 
immediate future

Domain Evolution Time
(km X km) (sec) "today" 12/04 9/05

(projected) (projected)
1 X 1 O(102) ~0.2
10 X 10 O(103) ~20 ~2
30 X 30 O(103~4) ~500 ~20 ~1
100 X 100 O(104~5) ~5000 ~200 ~10

~1
~103

104~5

105~6

Simulation/Real TimeCPU(hr) "today"
Cray T3E, IBM SP3

Speedup of HOS simulations
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Direct Simulation of Large-Scale Nonlinear Ocean Waves 

Domain: 30km ×××× 30km
Evolution time: 
0.5hour

Irregular short-crested 
wave-field, sea-state 
~8 (Tp = 12s, Hs = 12m)

Wave modes, N = 
1.6××××107

Nonlinear order, M = 4

# time steps ~ O(104)

Computing platform: 
Cray T3E with 256 
processors

Simulation time: 
O(100) hours



Combining
Nonlinear Wave Reconstruction/Forecasting with 

Large-Amplitude Ship Motions Simulations

Using Large-Amplitude Motion Program (LAMP; 
Lin & Yue, 1990) for vehicle dynamic simulation:

• A multi-level 3-D time-domain simulation system for 
nonlinear ship motions, wave loads, and structural 
responses.

• Using HOS wave-field kinematics for LAMP boundary 
condition on the ship hull.



High Speed Multi-hulls

Planing Boat in WavesParametric Rolling & Green Water

Examples of LAMP Vehicle Dynamics SimulationsExamples of LAMP Vehicle Dynamics Simulations

Ship-Ship Interaction



Incorporating Path Optimization and 
Rudder/Throttle Control to Enable SWASH

• Objective:  To find optimal trajectories of vessels in waves, 
by combining physical models of high fidelity (LAMP) with 
accurate environmental models (wave reconstruction and 
wind)

• Available Methods for Optimization:
– Maximum Principle (Pontryagin) - continuous or discrete
– Dynamic Programming (Bellman) - inherently discrete

• Adaptive step-size time integration is needed in highly 
dynamic and nonlinear ship motion prediction.

• Current Approach:  Employ a standard gradient technique 
with variable gain, to optimize via the Maximum Principle.  
Computation load is acceptable.



Optimal Path Planning in Dynamically Evolving Environment



System Concept/ArchitectureSystem Concept/Architecture
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SWASH DemonstrationsSWASH Demonstrations

Demo 1 – Small Vessel Operations in Waves

1.1 – Minimize overall rms motion in a transit (case I)

1.2 – Minimize overall rms motion in a transit (case II)

1.3 – Minimize motions in a specified time window

Demo 2 – Large Vessel Operation in Waves: 
Assisted/automated helicopter landing and take-off



Objective: Reduction of RMS Heave Motion in Point-to-Point Transit
Vessel: 7.2m RHIB, approx. 20 knots in SS4
Bearing: 45 degrees from head sea, average
Performance: Reduction of RMS heave from 0.51 to 0.34m:  34%

Demo 1.1:Demo 1.1: Minimize overall rms motion in a transit (case I)



Demo 1.1:Demo 1.1: Minimize overall rms motion in a transit (case I)



Objective: Minimize rms vertical motions while trying to reach a given 
(possibly changing) destination within a fixed time.

Short-crested (60 deg spread) irregular seaway (wave heights up to 8 m)

Demo 1.2:Demo 1.2: Minimize overall rms motion in a transit (case II)

No wave optimizationNo wave optimization

Wave optimizationWave optimization

Performance Comparison
RMS of wave… Straight Course With Path Opt        % reduction
Elevation 0.971 m 0.623 m                       36%
Slope in axial dir 2.111 deg 1.116 deg                    48%

η



Objective: Reduction of Peak Heave Acceleration in a Specific Time 
Window during Point-to-Point Transit

Vessel: 7.2m RHIB, approx. 20 knots in SS4
Bearing: 45 degrees from head sea, average
Performance: Reduction in window from 0.25g to 0.05g:  80%

Demo 1.3:Demo 1.3: Minimize motions in a specified time window



Demo 1.3:Demo 1.3: Minimize motions in a specified time window



OBJECTIVE: To find window of opportunity (> 15 second 
duration of specified calm conditions) for helicopter 
landing/take-off.

DESCRIPTION:
• CG-47 ship in shortcrested seaway of sea state 6 with  

10 knots forward speed (head seas).
• Time windows when operational criteria are above, 

below or near threshold limits are predicted (represented 
in a color scheme in the demo) .

Demo 2: Helicopter Landing on Flight DeckDemo 2: Helicopter Landing on Flight Deck



• Operational indicator chart scrolls from right to left in time where the center of 
the chart represents the current time. 

• Actual/measured criteria is shown on the left side of the chart for comparison 
to the predicted criteria.

• Operational indicator gives operator a forecast of both the timing and 
duration of potential future windows of opportunities.

• Flight Deck Operational Criteria for CG-47

Green:  All Criteria Satisfied
Yellow: Some Criteria Within 20% of Limit 
Red:      One or More Criteria Violated

Predicted
Windows of
Opportunity

Operation Indicator Chart DescriptionOperation Indicator Chart Description

Predicted
Actual

Past ← Present → Future

Launch/Recovery
Criteria

1.5 deg2.5 deg0.1G0.2G

Pitch
angle

Roll
angle

Lateral
Acceleration

Vertical
Acceleration



Criteria Not Presently Satisfied Criteria Presently Satisfied
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Windows of
Opportunity

Shading of Flight 
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Operability 

Demo 2: Helicopter Landing on Flight DeckDemo 2: Helicopter Landing on Flight Deck



Demo 2: Helicopter Landing on Flight DeckDemo 2: Helicopter Landing on Flight Deck



Technology Development forTechnology Development for
Severe Weather Automated/Assisted Ship Handling (SWASH)Severe Weather Automated/Assisted Ship Handling (SWASH)

$ We have demonstrated the feasibility of SWASH by exploiting  and
integrating advances in the deterministic prediction of large-scale 
nonlinear wave-fields; large-amplitude ship motion simulations; and 
optimal control and estimation.

$ Real-time realistic SWASH capability is likely in the near-term with 
further R&D concurrent with developments in sensor system 
technology and high-performance computing.

$ A research plan is in place to achieve ~O(10) simulation vs. real time 
SWASH performance in the very near future, and ~O(1) time in the 
foreseeable future.

Conclusions
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