A Theory of Rods with Microstructure as a Model for Double Stranded Rods

Maher Moakher
Ecole Nationale d'Ingénieurs de Tunis
John H. Maddocks
Ecole Polytechnique Fédérale de Lausanne

Fields Institute, Toronto, 2003

Motivation: DNA Modeling

All Atoms

Primary Structure

Watson-Crick

Secondary Structure

Elastic Rod

Tertiary Structure

Configuration

We consider a ribbon \mathscr{R} composed of two special Cosserat rods \mathscr{R}^{+}and \mathscr{R}^{-}, which we call strands, that are bound together elastically.

Each strand is completely described by

- a position vector $\boldsymbol{r}^{ \pm}(s, t)$,
- a frame of directors $\left\{\boldsymbol{d}_{i}^{ \pm}(s, t)\right\}$.

The curves $\mathscr{C}^{ \pm}(t) \equiv\left\{\boldsymbol{r}^{ \pm}(s, t)\right.$, $\left.s \in[0, L]\right\}$ represent the lines of centroids, in the current configuration, of $\mathscr{R}^{ \pm}$.

The triads $\left\{\boldsymbol{d}_{i}^{ \pm}(s, t)\right\}$ give the orientation of the material cross section at s of $\mathscr{R}^{ \pm}$.

Configuration: Schematic

Kinematics: Strains associated with the centerlines

We define the strain vectors v and $v^{ \pm}$by

$$
\begin{aligned}
& \boldsymbol{v}:=\boldsymbol{r}_{s} \\
& \boldsymbol{v}^{+}:=\boldsymbol{r}_{s}^{+} \\
& \boldsymbol{v}^{-}:=\boldsymbol{r}_{s}^{-}
\end{aligned}
$$

Then we have the following relations

$$
\begin{aligned}
& \boldsymbol{v}^{+}=\boldsymbol{v}+\boldsymbol{w}_{s} \\
& \boldsymbol{v}^{-}=\boldsymbol{v}-\boldsymbol{w}_{s}
\end{aligned}
$$

Kinematics: Strains associated with the directors

Let \boldsymbol{u} and $\boldsymbol{u}^{ \pm}$be the (Darboux) vectors for \boldsymbol{R} and $\boldsymbol{R}^{ \pm}$, i.e., such that

$$
\begin{aligned}
& \boldsymbol{R}_{s} \boldsymbol{R}^{T}=\boldsymbol{u}^{\times}, \\
& \boldsymbol{R}_{s}^{+} \boldsymbol{R}^{+T}=\left(\boldsymbol{u}^{+}\right)^{\times}, \\
& \boldsymbol{R}_{s}^{-} \boldsymbol{R}^{-T}=\left(\boldsymbol{u}^{-}\right)^{\times} .
\end{aligned}
$$

Given a vector \boldsymbol{a}, we denote by \boldsymbol{a}^{\times}the second order skew-symmetric tensor such that, for any vector b,

$$
a^{\times} b=a \times b
$$

We have the following relations

$$
\begin{aligned}
& \boldsymbol{u}^{+}=\boldsymbol{u}+\alpha \boldsymbol{A}^{\nabla}, \\
& \boldsymbol{u}^{-}=\boldsymbol{u}-\alpha \boldsymbol{A}^{T} \boldsymbol{\eta}^{\nabla},
\end{aligned}
$$

where
η is the Gibbs rotation vector of \boldsymbol{P},

$$
\begin{aligned}
& \boldsymbol{A}=\boldsymbol{I}+\boldsymbol{\eta}^{\times}, \\
& \alpha=2 /(1+\boldsymbol{\eta} \cdot \boldsymbol{\eta}), \\
& \boldsymbol{\eta}^{\nabla}=\boldsymbol{\eta}_{s}-\boldsymbol{u} \times \boldsymbol{\eta} .
\end{aligned}
$$

$$
\boldsymbol{P}=\boldsymbol{I}+\alpha\left[\boldsymbol{\eta}^{\times}+\left(\boldsymbol{\eta}^{\times}\right)^{2}\right] .
$$

Kinematics: Linear velocities

We define the vectors γ and $\gamma^{ \pm}$by

$$
\begin{aligned}
& \boldsymbol{\gamma}:=\boldsymbol{r}_{t} \\
& \boldsymbol{\gamma}^{+}:=\boldsymbol{r}_{t}^{+} \\
& \boldsymbol{\gamma}^{-}:=\boldsymbol{r}_{t}^{-}
\end{aligned}
$$

Then we have the following relations

$$
\begin{aligned}
& \gamma^{+}=\gamma+\boldsymbol{w}_{t}, \\
& \gamma^{-}=\gamma-\boldsymbol{w}_{t} .
\end{aligned}
$$

Kinematics: Angular velocities

Let ω and $\omega^{ \pm}$be the angular velocities for \boldsymbol{R} and $\boldsymbol{R}^{ \pm}$, i.e., such that

$$
\begin{aligned}
& \boldsymbol{R}_{t} \boldsymbol{R}^{T}=\boldsymbol{\omega}^{\times}, \\
& \boldsymbol{R}_{t}^{+} \boldsymbol{R}^{+T}=\left(\boldsymbol{\omega}^{+}\right)^{\times}, \\
& \boldsymbol{R}_{t}^{-} \boldsymbol{R}^{-T}=\left(\boldsymbol{\omega}^{-}\right)^{\times} .
\end{aligned}
$$

We then have the following relations

$$
\begin{aligned}
& \boldsymbol{\omega}^{+}=\boldsymbol{\omega}+\alpha \boldsymbol{A} \stackrel{\circ}{\boldsymbol{\eta}}, \\
& \boldsymbol{\omega}^{-}=\boldsymbol{\omega}-\alpha \boldsymbol{A}^{T} \boldsymbol{\circ},
\end{aligned}
$$

where

$$
\stackrel{\circ}{\boldsymbol{\eta}}=\boldsymbol{\eta}_{t}-\boldsymbol{\omega} \times \boldsymbol{\eta} .
$$

Two Paradigms

Configuration Variables

$$
\left\{\left(\boldsymbol{r}^{+}, \boldsymbol{R}^{+}\right),\left(\boldsymbol{r}^{-}, \boldsymbol{R}^{-}\right)\right\}
$$

Configuration Space

$$
\left\{\mathbb{R}^{3} \times S O(3)\right\}^{2}
$$

Configuration Variables

$$
(\boldsymbol{r}, \boldsymbol{R}, \boldsymbol{w}, \boldsymbol{P})
$$

Configuration Space
$\mathbb{R}^{3} \times S O(3) \times \mathbb{R}^{3} \times S O(3)$

Rod
with
Microstructure

Action Density for a Rod with Microstructures

We consider a special Cosserat rod \mathscr{R} endowed with two microstructure variables:

- a vector \boldsymbol{w}
- a rotation tensor \boldsymbol{P}.

Let \mathscr{P} be a part of \mathscr{R} which is defined by $s_{1} \leq s \leq s_{2}$ and let \mathscr{I} be the time interval $t_{1} \leq t \leq t_{2}$.

To every set of events $\mathscr{P} \times \mathscr{I}$ we associate the action \mathcal{A} given by

$$
\mathcal{A}(\mathscr{P} \times \mathscr{I})=\int_{t_{1}}^{t_{2}} \int_{s_{1}}^{s_{2}} \widetilde{\mathfrak{L}}\left(s, t, \boldsymbol{r}, \boldsymbol{r}_{s}, \boldsymbol{r}_{t}, \boldsymbol{R}, \boldsymbol{R}_{s}, \boldsymbol{R}_{t}, \boldsymbol{w}, \boldsymbol{w}_{s}, \boldsymbol{w}_{t}, \boldsymbol{P}, \boldsymbol{P}_{s}, \boldsymbol{P}_{t}\right) d s d t .
$$

The density of action $\tilde{\mathfrak{L}}$ is function of s, t and the macro- and micro-kinematical variables as well as their spatial and time derivatives.

Modified Form of the Action Density

It is more convenient to work with \boldsymbol{w}^{∇} and $\stackrel{\circ}{\boldsymbol{w}}$ instead of \boldsymbol{w}_{s} and \boldsymbol{w}_{t} and with $\boldsymbol{\eta}$, $\alpha \boldsymbol{\eta} \nabla$ and $\alpha \dot{\eta}$ instead of $\boldsymbol{P}, \boldsymbol{P}_{s}$ and \boldsymbol{P}_{t}.

We therefore introduce the variables

$$
\begin{array}{ll}
\boldsymbol{v}^{c}=\boldsymbol{w}^{\nabla}, & \boldsymbol{\gamma}^{c}=\stackrel{\circ}{\boldsymbol{w}} \\
\boldsymbol{u}^{c}=\alpha \boldsymbol{\eta}^{\nabla}, & \boldsymbol{\omega}^{c}=\alpha \stackrel{\circ}{\boldsymbol{\eta}},
\end{array}
$$

where $\alpha=2 /(1+\boldsymbol{\eta} \cdot \boldsymbol{\eta})$, and for any vector \boldsymbol{a} we have

$$
\boldsymbol{a}^{\nabla}=\boldsymbol{a}_{s}-\boldsymbol{R}_{s} R a, \quad \stackrel{\circ}{a}=a_{t}-\boldsymbol{R}_{t} R a .
$$

Accordingly, we define a new density of action \mathfrak{L} by

$$
\begin{aligned}
& \mathfrak{L}\left(s, t, \boldsymbol{r}, \boldsymbol{r}_{s}, \boldsymbol{r}_{t}, \boldsymbol{R}, \boldsymbol{R}_{s}, \boldsymbol{R}_{t}, \boldsymbol{w}, \boldsymbol{v}^{c}, \boldsymbol{\gamma}^{c}, \boldsymbol{\eta}, \boldsymbol{u}^{c}, \boldsymbol{\omega}^{c}\right): \\
& \tilde{\mathfrak{L}}\left(s, t, \boldsymbol{r}, \boldsymbol{r}_{s}, \boldsymbol{r}_{t}, \boldsymbol{R}, \boldsymbol{R}_{s}, \boldsymbol{R}_{t}, \boldsymbol{w}, \boldsymbol{w}_{s}, \boldsymbol{w}_{t}, \boldsymbol{P}, \boldsymbol{P}_{s}, \boldsymbol{P}_{t}\right) .
\end{aligned}
$$

Euclidean Invariance

We require \mathfrak{L} be invariant under the group of Euclidean displacements:

- \mathfrak{L} must be independent of t and r.
- \mathfrak{L} depends on \boldsymbol{R} only through the reduced variables

$$
\begin{array}{lll}
& \mathbf{v}=\boldsymbol{R}^{T} \boldsymbol{r}^{\prime}, & \boldsymbol{\gamma}=\boldsymbol{R}^{T} \dot{\boldsymbol{r}}, \\
& \mathbf{u}^{\times}=\boldsymbol{R}^{T} \boldsymbol{R}^{\prime}, & \boldsymbol{\omega}^{\times}=\boldsymbol{R}^{T} \boldsymbol{R}, \\
\mathbf{w}=\boldsymbol{R}^{T} \boldsymbol{w}, & \mathbf{v}^{c}=\boldsymbol{R}^{T} \boldsymbol{v}^{c}, & \boldsymbol{\gamma}=\boldsymbol{R}^{T} \boldsymbol{\gamma}^{c}, \\
\boldsymbol{\eta}=\boldsymbol{R}^{T} \boldsymbol{\eta}, & \mathbf{u}^{c}=\boldsymbol{R}^{T} \boldsymbol{u}^{c}, & \boldsymbol{\omega}^{c}=\boldsymbol{R}^{T} \boldsymbol{\omega}^{c},
\end{array}
$$

We therefore obtain the following reduced form of the action density

$$
\begin{aligned}
& \mathcal{L}\left(s, \mathbf{v}, \boldsymbol{\gamma}, \mathbf{u}, \boldsymbol{\omega}, \mathbf{w}, \mathbf{v}^{c}, \boldsymbol{\gamma}^{\mathcal{f}}, \boldsymbol{\eta}, \mathbf{u}^{c}, \boldsymbol{\omega}^{c}\right):= \\
& \quad \mathcal{L}\left(s, \boldsymbol{R}^{T} \boldsymbol{r}_{s}, \boldsymbol{R}^{T} \boldsymbol{r}_{t}, \boldsymbol{R}^{T} \boldsymbol{R}_{s}, \boldsymbol{R}^{T} \boldsymbol{R}_{t}, \boldsymbol{R}^{T} \boldsymbol{w}, \boldsymbol{R}^{T} \boldsymbol{v}^{c}, \boldsymbol{R}^{T} \gamma^{c}, \boldsymbol{R}^{T} \boldsymbol{\eta}, \boldsymbol{R}^{T} \boldsymbol{u}^{c}, \boldsymbol{R}^{T} \boldsymbol{\omega}^{c}\right) .
\end{aligned}
$$

Further, we assume that \mathcal{L} has the separated form
$\mathcal{L}\left(s, \mathbf{v}, \boldsymbol{\gamma}, \mathbf{u}, \boldsymbol{\omega}, \mathbf{w}, \mathbf{v}^{c}, \boldsymbol{\gamma}^{c}, \boldsymbol{\eta}, \mathbf{u}^{c}, \boldsymbol{\omega}^{c}\right)=\mathcal{K}\left(s, \boldsymbol{\gamma}, \omega, \mathbf{w}, \boldsymbol{\gamma}, \boldsymbol{\eta}, \boldsymbol{\omega}^{c}\right)-\mathcal{W}\left(s, \mathbf{v}, \mathbf{u}, \mathbf{w}, \mathbf{v}^{c}, \boldsymbol{\eta}, \mathbf{u}^{c}\right)$.

Hamilton's Principle

According to Hamilton's principle, the equations of motion are given by Euler-Poincaré equations of the variational equation

$$
\delta \mathcal{A}(\mathscr{P} \times \mathscr{I})=0 .
$$

We obtain
$\left(\boldsymbol{R} \frac{\partial \mathcal{W}}{\partial \mathbf{v}}\right)_{s}-\left(\boldsymbol{R} \frac{\partial \mathcal{K}}{\partial \boldsymbol{\gamma}}\right)_{t}=\mathbf{0}$,
$\left(\boldsymbol{R} \frac{\partial \mathcal{W}}{\partial \mathbf{u}}\right)_{s}+\boldsymbol{r}_{s} \times \boldsymbol{R} \frac{\partial \mathcal{W}}{\partial \mathbf{v}}-\left(\boldsymbol{R} \frac{\partial \mathcal{K}}{\partial \omega}\right)_{t}-\boldsymbol{r}_{t} \times \boldsymbol{R} \frac{\partial \mathcal{K}}{\partial \boldsymbol{\gamma}}=\mathbf{0}$,
$\boldsymbol{R}\left[\frac{\partial \mathcal{W}}{\partial \mathbf{w}}-\left(\frac{\partial \mathcal{W}}{\partial \mathbf{v}^{c}}\right)_{s}-\frac{\partial \mathcal{K}}{\partial \mathbf{w}}+\left(\frac{\partial \mathcal{K}}{\partial \boldsymbol{\gamma}^{c}}\right)_{t}\right]=\mathbf{0}$,
$\boldsymbol{R}\left[\frac{\partial \mathcal{W}}{\partial \boldsymbol{\eta}}-\left(\alpha \frac{\partial \mathcal{W}}{\partial \mathbf{u}^{c}}\right)_{s}-\frac{\partial \mathcal{K}}{\partial \boldsymbol{\eta}}+\left(\alpha \frac{\partial \mathcal{K}}{\partial \boldsymbol{\omega}^{c}}\right)_{t}\right]+\alpha\left(\boldsymbol{\omega}^{c} \cdot \boldsymbol{R} \frac{\partial \mathcal{K}}{\partial \boldsymbol{\omega}^{c}}-\boldsymbol{u}^{c} \cdot \boldsymbol{R} \frac{\partial \mathcal{W}}{\partial \mathbf{u}^{c}}\right) \boldsymbol{\eta}=\mathbf{0}$.

Constitutive Equations

$$
\begin{array}{llrl}
\boldsymbol{p} & =\boldsymbol{R} \frac{\partial \mathcal{K}}{\partial \boldsymbol{\gamma}}, & \boldsymbol{n}=\boldsymbol{R} \frac{\partial \mathcal{W}}{\partial \mathbf{v}}, \\
\boldsymbol{\pi} & =\boldsymbol{R} \frac{\partial \mathcal{K}}{\partial \boldsymbol{\omega}}, & \boldsymbol{m}=\boldsymbol{R} \frac{\partial \mathcal{W}}{\partial \mathbf{u}}, \\
\boldsymbol{p}^{c}=\boldsymbol{R} \frac{\partial \mathcal{K}}{\partial \boldsymbol{\gamma}}, & \boldsymbol{n}^{c}=\boldsymbol{R} \frac{\partial \mathcal{W}}{\partial \mathbf{v}^{c}}, \\
\boldsymbol{\pi}^{c} & =\boldsymbol{R} \frac{\partial \mathcal{K}}{\partial \boldsymbol{\omega}^{c}}+\boldsymbol{w} \times \boldsymbol{p}-\boldsymbol{\eta} \times\left(\boldsymbol{\pi}-\boldsymbol{w} \times \boldsymbol{p}^{c}\right), & \boldsymbol{m}^{c}=\boldsymbol{R} \frac{\partial \mathcal{W}}{\partial \mathbf{u}^{c}}+\boldsymbol{w} \times \boldsymbol{n}-\boldsymbol{\eta} \times\left(\boldsymbol{m}-\boldsymbol{w} \times \boldsymbol{n}^{c}\right), \\
2 \boldsymbol{\sigma} & =\boldsymbol{R} \frac{\partial \mathcal{K}}{\partial \mathbf{w}}+\boldsymbol{\omega} \times \boldsymbol{p}^{c}, & 2 \boldsymbol{f}=\boldsymbol{R} \frac{\partial \mathcal{W}}{\partial \mathbf{w}}+\boldsymbol{u} \times \boldsymbol{n}^{c}, \\
2 \boldsymbol{\tau}=\frac{1}{\alpha} \boldsymbol{R} \frac{\partial \mathcal{K}}{\partial \boldsymbol{\eta}}+\boldsymbol{\omega} \times \boldsymbol{\pi}^{c}-\boldsymbol{\omega}^{c} \times\left(\boldsymbol{\eta} \times \boldsymbol{\pi}^{c}\right)+\ldots & 2 \boldsymbol{c}=\frac{1}{\alpha} \boldsymbol{R} \frac{\partial \mathcal{W}}{\partial \boldsymbol{\eta}}+\boldsymbol{u} \times \boldsymbol{m}^{c}-\boldsymbol{u}^{c} \times\left(\boldsymbol{\eta} \times \boldsymbol{m}^{c}\right)+\ldots
\end{array}
$$

Equations of Motion

$$
\begin{aligned}
\boldsymbol{n}_{s} & =\boldsymbol{p}_{t}, \\
\boldsymbol{m}_{s}+\boldsymbol{r}_{s} \times \boldsymbol{n} & =\boldsymbol{\pi}_{t}+\boldsymbol{r}_{t} \times \boldsymbol{p}, \\
\boldsymbol{n}_{s}^{c}-2 \boldsymbol{f} & =\boldsymbol{p}_{t}^{c}-2 \sigma, \\
\boldsymbol{m}_{s}^{c}+\boldsymbol{r}_{s} \times \boldsymbol{n}^{c}-2 \boldsymbol{c} & =\boldsymbol{\pi}_{t}^{c}+\boldsymbol{r}_{t} \times \boldsymbol{p}^{c}-2 \tau .
\end{aligned}
$$

Specialization to Double-Stranded Rods

When

$$
\begin{aligned}
& \mathcal{W}\left(s ; \mathbf{v}, \mathbf{u}, \mathbf{w}, \mathbf{v}^{c}, \boldsymbol{\eta}, \mathbf{u}^{c}\right)=\widetilde{\mathcal{W}}\left(s ; \mathbf{v}^{+}, \mathbf{v}^{-}, \mathbf{u}^{+}, \mathbf{u}^{-}, \mathbf{w}, \boldsymbol{\eta}\right), \\
& \mathcal{K}\left(s ; \boldsymbol{\gamma}, \boldsymbol{\omega}, \mathbf{w}, \boldsymbol{\gamma}^{c}, \boldsymbol{\eta}, \boldsymbol{\omega}^{c}\right)=\widetilde{\mathcal{K}}\left(s ; \boldsymbol{\gamma}^{+}, \boldsymbol{\gamma}^{-}, \boldsymbol{\omega}^{+}, \boldsymbol{\omega}^{-}, \mathbf{w}, \boldsymbol{\eta}\right)
\end{aligned}
$$

we obtain

$$
\begin{array}{lll}
\boldsymbol{p}=\boldsymbol{p}^{+}+\boldsymbol{p}^{-}, & \boldsymbol{n}=\boldsymbol{n}^{+}+\boldsymbol{n}^{-}, \\
\boldsymbol{\pi}=\boldsymbol{\pi}^{+}+\boldsymbol{\pi}^{-}+\boldsymbol{w} \times\left(\boldsymbol{p}^{+}-\boldsymbol{p}^{-}\right), & \boldsymbol{m}=\boldsymbol{m}^{+}+\boldsymbol{m}^{-}+\boldsymbol{w} \times\left(\boldsymbol{n}^{+}-\boldsymbol{n}^{-}\right), \\
\boldsymbol{p}^{c}=\boldsymbol{p}^{+}-\boldsymbol{p}^{-}, & \boldsymbol{n}^{c}=\boldsymbol{n}^{+}-\boldsymbol{n}^{-}, \\
\boldsymbol{\pi}^{c}=\boldsymbol{\pi}^{+}-\boldsymbol{\pi}^{-}+\boldsymbol{w} \times\left(\boldsymbol{p}^{+}+\boldsymbol{p}^{-}\right), & \boldsymbol{m}^{c}=\boldsymbol{m}^{+}-\boldsymbol{m}^{-}+\boldsymbol{w} \times\left(\boldsymbol{n}^{+}+\boldsymbol{n}^{-}\right), \\
2 \boldsymbol{\sigma}=\boldsymbol{R} \frac{\partial \widetilde{\mathcal{K}}}{\partial \mathbf{w}}, & 2 \boldsymbol{f}=\boldsymbol{R} \frac{\partial \widetilde{\mathcal{W}}}{\partial \mathbf{w}}, \\
2 \boldsymbol{\tau}=\frac{1}{\alpha} \boldsymbol{R} \frac{\partial \widetilde{\mathcal{K}}}{\partial \boldsymbol{\eta}}-\boldsymbol{\eta} \times(\boldsymbol{w} \times \boldsymbol{\sigma}), & 2 \boldsymbol{c}=\frac{1}{\alpha} \boldsymbol{R} \frac{\partial \widetilde{\mathcal{W}}}{\partial \boldsymbol{\eta}}-\boldsymbol{\eta} \times(\boldsymbol{w} \times \boldsymbol{f}),
\end{array}
$$

where

$$
\begin{array}{ll}
\boldsymbol{p}^{+}=\boldsymbol{P} \boldsymbol{R} \frac{\partial \widetilde{\mathcal{K}}}{\partial \boldsymbol{\gamma}^{+}}, & \boldsymbol{p}^{-}=\boldsymbol{P}^{T} \boldsymbol{R} \frac{\partial \widetilde{\mathcal{K}}}{\partial \boldsymbol{\gamma}} \\
\boldsymbol{\pi}^{+}=\boldsymbol{P} \boldsymbol{R} \frac{\partial \widetilde{\mathcal{K}}}{\partial \omega^{+}}, & \boldsymbol{\pi}^{-}=\boldsymbol{P}^{T} \boldsymbol{R} \frac{\partial \widetilde{\mathcal{K}}}{\partial \boldsymbol{\omega}^{-}} \\
\boldsymbol{n}^{+}=\boldsymbol{P} \boldsymbol{R} \frac{\partial \widetilde{\mathcal{W}}}{\partial \mathbf{v}^{+}}, & \boldsymbol{n}^{-}=\boldsymbol{P}^{T} \boldsymbol{R} \frac{\partial \widetilde{\mathcal{W}}}{\partial \mathbf{v}^{-}} \\
\boldsymbol{m}^{+}=\boldsymbol{P} \boldsymbol{R} \frac{\partial \widetilde{\mathcal{W}}}{\partial \mathbf{u}^{+}}, & \boldsymbol{m}^{-}=\boldsymbol{P}^{T} \boldsymbol{R} \frac{\partial \widetilde{\mathcal{W}}}{\partial \mathbf{u}^{-}}
\end{array}
$$

Linearly-elastic Strands

$$
\begin{aligned}
& \binom{\boldsymbol{p}}{\boldsymbol{p}^{c}}=\rho\binom{\boldsymbol{r}_{t}}{\boldsymbol{w}_{t}}, \\
& \binom{\boldsymbol{\pi}}{\boldsymbol{\pi}^{c}}=\left(\begin{array}{ll}
\mathbb{J} & \mathbb{J}^{c} \\
\mathbb{J}^{c} & \mathbb{J}
\end{array}\right)\binom{\boldsymbol{\omega}+\boldsymbol{\eta} \times \boldsymbol{\omega}^{c}}{\boldsymbol{\omega}^{c}}+\binom{\boldsymbol{w} \times \boldsymbol{p}^{c}}{\boldsymbol{w} \times \boldsymbol{p}}, \\
& \binom{\boldsymbol{n}}{\boldsymbol{n}^{c}}=\left(\begin{array}{cc}
\mathbb{L} & \mathbb{L}^{c} \\
\mathbb{L}^{c} & \mathbb{L}^{c}
\end{array}\right)\left\{\binom{\boldsymbol{v}}{\boldsymbol{v}^{c}+\boldsymbol{w} \times \boldsymbol{u}}-\left(\begin{array}{cc}
\boldsymbol{E} & \boldsymbol{E}^{c} \\
\boldsymbol{E}^{c} & \boldsymbol{E}
\end{array}\right)\binom{\widetilde{\boldsymbol{v}}}{\widetilde{\boldsymbol{v}}^{c}+\widetilde{\boldsymbol{w}} \times \widetilde{\boldsymbol{u}}}\right\}, \\
& \binom{\boldsymbol{m}}{\boldsymbol{m}^{c}}=\left(\begin{array}{cc}
\mathbb{K} & \mathbb{K}^{c} \\
\mathbb{K}^{c} & \mathbb{K}
\end{array}\right)\left\{\binom{\boldsymbol{u}+\boldsymbol{\eta} \times \boldsymbol{u}^{c}}{\boldsymbol{u}^{c}}-\left(\begin{array}{cc}
\boldsymbol{E} & \boldsymbol{E}^{c} \\
\boldsymbol{E}^{c} & \boldsymbol{E}
\end{array}\right)\binom{\widetilde{\boldsymbol{u}}+\widetilde{\boldsymbol{\eta}} \times \widetilde{\boldsymbol{u}}^{c}}{\widetilde{\boldsymbol{u}}}\right\}+\binom{\boldsymbol{w} \times \boldsymbol{n}^{c}}{\boldsymbol{w} \times \boldsymbol{n}},
\end{aligned}
$$

where

$$
\begin{array}{ll}
\rho=\rho^{+}+\rho^{-} & \\
\mathbb{M}=\mathbb{M}^{+}+\mathbb{M}^{-}, & \mathbb{M}^{c}=\mathbb{M}^{+}-\mathbb{M}^{-}, \\
\mathbb{M}^{+}=\boldsymbol{P} \boldsymbol{R} \mathbf{M}^{+} \boldsymbol{R}^{T} \boldsymbol{P}^{T}, & \mathbb{M}^{-}=\boldsymbol{P}^{T} \boldsymbol{R} \mathbf{M}^{-} \boldsymbol{R}^{T} \boldsymbol{P}, \\
\boldsymbol{E}=\left(\boldsymbol{P} \boldsymbol{R} \widetilde{\boldsymbol{R}}^{T} \widetilde{\boldsymbol{P}}^{T}+\boldsymbol{P}^{T} \boldsymbol{R} \widetilde{\boldsymbol{R}}^{T} \widetilde{\boldsymbol{P}}\right) / 2, & \boldsymbol{E}^{c}=\left(\boldsymbol{P} \boldsymbol{R} \widetilde{\boldsymbol{R}}^{T} \widetilde{\boldsymbol{P}}^{T}-\boldsymbol{P}^{T} \boldsymbol{R} \widetilde{\boldsymbol{R}}^{T} \widetilde{\boldsymbol{P}}\right) / 2
\end{array}
$$

Example: A Double Ring

Reference configuration (unstressed)
Low strain
energy bi-ring $\left\{\begin{array}{l}\boldsymbol{r}=R\left(\cos \frac{s}{R} \boldsymbol{e}_{1}+\sin \frac{s}{R} \boldsymbol{e}_{3}\right) \\ \boldsymbol{w}=\hat{h} \boldsymbol{e}_{2} \\ \boldsymbol{n}=\mathbf{0}, \quad \boldsymbol{n}^{c}=\mathbf{0} \\ \boldsymbol{m}=\frac{2 K}{R} \boldsymbol{e}_{2}, \quad \boldsymbol{m}^{c}=\mathbf{0}\end{array}\right.$
High strain energy bi-ring

$$
\left\{\begin{array}{l}
\boldsymbol{r}=R\left(\cos \frac{s}{R} \boldsymbol{e}_{2}+\sin \frac{s}{R} \boldsymbol{e}_{3}\right) \\
\boldsymbol{w}=h\left(\cos \frac{s}{R} \boldsymbol{e}_{2}+\sin \frac{s}{R} \boldsymbol{e}_{3}\right) \\
h=\frac{G \hat{h}}{A / R^{2}+G} \\
\boldsymbol{n}=\mathbf{0}, \quad \boldsymbol{n}^{c}=\frac{2 A h}{R} \boldsymbol{r}^{\prime} \\
\boldsymbol{m}=\frac{2\left(K+A h^{2}\right)}{R} \boldsymbol{e}_{1}, \quad \boldsymbol{m}^{c}=\mathbf{0}
\end{array}\right.
$$

