Problem

Understanding the asymptotic behav-
ior, as € | 0, of the variational problems

generated by the energies

1 — |Vul?)?
Fg(u):/Q( |€ ) - e|VVul|?

where v :R?2H>Q = R

and some boundary conditions must be
added.



Motivations

a) Smectic liquid crystals:

P. Aviles, Y. Giga (1987)

b) Thin-films under biaxial compression:

G. Gioia, M. Ortiz (1994)

c) Micromagnetics:

A. De Simone, R. Kohn, S. Mtller, F. Otto.

d) Analogies with lower order functionals (suc-
cessfully studied by many authors).



A solution of the eikonal equation:

€2 is an ellipse
u(x) = dist (z, 02)
(Hence u = 0 on 9092).

0S2

graph of u




A conjectured asymptotic energy
Aviles—Giga 87

If Vu= 1—-a.e.
Vu is “‘smooth” out of a 1—d set Jy

Vu has right and left trace on Jy

then

the asymptotic energy of u should be

F(u) = /J VuT — Vu [P du!

Vu



Results

Compactness If limsup; F:(us) < K < oo,
then {uc} is strongly precompact in Wh3,
(Ambrosio—D.—Mantegazza 99

De Simone—Kohn—Miiller—Otto 99).

Asymptotic functional The conjectured
asymptotic energy F' has a weak formula-
tion F in a larger space. Direct methods
give the existence of minimizers.
(Ambrosio—D.—Mantegazza 99)

Lower bound If an asymptotic energy G
exists, then G(u) > F(u)

Jin—Kohn 4+ Aviles—Giga 99

ADM for the weak setting

Upper bound G coincides with F on piece-
wise affine functions.
D. 00



Entropies

Jin—Kohn 99

If [Vu| =1 and u is smooth, then

8:!:[(“33)3] — 3y[(uy)3] =0

There exist many & such that

V- [®P(Vu)]=0.

Connections to the theory of hyper-
bolic conservation laws.



Non—smooth solutions

If v is not smooth, then V .- [®(Vu)] detects
the one—dimensional singularities of Vu.

u piecewise C1 = V.[®(Vu)] is a 1-dimensional
measure supported on the set of discontinuity
of Vu

Jin—Kohn computations:

a) [[V-[®(Vu)]|| < CoF(u);

b) If there exists us — u with F:(us) < C, then
F(u) < C;

c) Some &’s “calibrate” F'(u).



Weak setting

E = {CD entropies for |Vu| = 1}.

S = {|Vu| —1 and pe =V - [®(Vu)]
IS @ measure VP & 8}

F(u) = "“supremum” of ceV-[P(Vu)]



Natural questions

If w € S, is it true (in some suitable
weak sense) that Vu is “smooth” out-
side a 1—-dimensional set Jy, and has

right and left traces on Jy,”

Can we compute F(u) as

/J Vut — vu—|3dnl?

Vu



Internal motivations

a) Natural path in variational formulations:
Classical = Weak = “Almost classical”

b) Mild regularity theorem for the class S and
hence for a minimizer.

c) A first step towards closing the '—convergence
problem (and hence towards a full answer

to the starting problem).



BV functions

They would provide a good setting for
the limiting variational problem. For
two reasons:

Theorem 1 (DG, FF) Ifv: R™ — R
iIs a BV function, there exists a rectifi-
able set J, of dimension m — 1 s.t.:

v has right and left trace H™ 1 almost
everywhere on J;

every t € R™\ J is a Lebesgue point
for v.



Theorem 2 (Vol'pert chain rule) v as

above. We use the notation:

Dv = Dvdiffused -+ (’U-I_—’U_)@V?‘[m_lLJrU.

IfFF:R - RMis Cl then

D(F(v)) = DF(U)Dvdiffused +

(F(v D) —F ) @uvH™ 1L J,.



Example 3 v: R — R.

Dv = Dvdiffused + Dvgtomic

= Dyg+ 3 w1 (2) —v ()]

TEJy

D(F(v)) = DF(v)Duvy

+ Y [FoT(z)) — F(v ()] 6z

€ Jy



NO BV

e There exist sequences {us} such that
Fg(Ue) S K < oo,
Ue — U

Vu & BV.

Ambrosio— D.—Mantegazza 99



e Vel. averaging lemmas —
Vu almost in W1/3,3/2

Perthame—Jabin '00 — '01

e Vu not better than W1l/3:3

D.—Westdickenberg '02

Remark 4 Almost optimality of Perthame—

Jabin’s velocity averaging lemmas.



Two general problems

Problem 5 Let £ C C°°(R",R"™) be given.
Let v € L®°(R¥ R™) and assume that

V- [P(v)] is a measure Vo € £.

Do the conclusions of De Giorgi—FF structure
Theorem hold?

Problem 6 Assume £ is the set of entropies
of an appropriate system of PDEs and assume
that v is a solution of this system.

Can we compute V-[®(v)] in a “Vol'pert” way?



a)

b)

External motivations

A regularity theory for entropy solutions
to scalar conservation laws, allowing for
rough initial data and undercompressive so-
lutions.

A regularity theory for compensated— com-
pactness solutions to 2 x 2 systems of con-
servation laws.

Connections with the theory of renormal-
ized solutions

see Ambrosio 03 (Remark 3.5)

Ambrosio — Bouchut — D. 03 (final sec-
tion).



Some answers

Theorem 7 (D.—Otto 02) ue S

Then there is J, rectifiable, dim .1 s.t.

(a) Vu is VMO outside J

(b) Vu has right and left trace on J

(©) pp = D(VuT)—d(Vu ) HILT + v

(Some information on v)



Theorem 8 (D.—O.—Westdick. 02)
u € L*°(R"™ R) weak solution of

V-[F(u)] = 0 (1)

£ is the set of entropies for (1).

Some assumptions on F needed.

Then 3J, rectifiable, cod. 1, s.t.

(a) u is VMO outside J

(b) u has traces on J

(c) relations between entropy prod. and

traces



Theorem 9 (D.—Riviere 03)
u e L*°(R,R) is an entropy solution of

Opu + Oz f (u)] = O. (2)

Some assumptions on f.

Then 3J, rectifiable, dim. 1 s.t.

(a) every x &€ J is a Lebesgue point

(b) u has traces on J

(c) A rule like Vol’pert chain rule

applies to the entropy prod.



Related works

Problem 10 An asymptotic variational prob-
lem which is similar to the starting one and
comes from micromagnetics (see the works of
Riviere—Serfaty).

For this problem there are also stronger infor-
mations (Ambrosio—Lecumberry—Riviere '02):
Interesting (and nontrivial) connections with
the viscosity solutions of the eikonal equation.

Exploiting these connections (and using blow—
up arguments) one has a structure theorem
(Ambrosio—Kirchheim—Lecumberry—Riviére 02)

These methods can be generalized to 1-d con-
servation laws with f strictly convex, when the
entropy production is a Radon measure.
(Lecumberry—Riviere 02)



