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Motivating Physical Phenomena

The performance of a polycrystalline material is influenced by the types of 
grain boundaries in the material and the way that they are connected.

Superconducting Critical Current Density

Electromigration Damage Resistance

Stress Corrosion Cracking

Electrical activity

Creep Behavior

Examples: 50 mm

fracture follows
 grain boundaries



Viewpoint:
Multiscale

•   use and occurence

•   interrogation

TEM
or orientation imaging 
microscopy (shown on 
previous slide)

Al

µm

Al2O3

100 µm cm

km



•   theory and simulation

atomic level
embedded atom methods
first principle computations

mesoscale

thermodynamics of surfaces (Mullins, Herring, et seq.)

simulations via random methods (Monte Carlo or Potts,
Anderson, Srolovitz, Grest & Sahni, et seq.)

simulations via resolution of the time dependent equations of motion

ensembles of grains
theories of the statistics of grain growth (very large literature)

•     rising role of automated data acquisition in materials science
information arrives at a scale at which it can be acquired:  
typically a mesoscale
here the scale of geometric and crystallographic information
involves ingredients in relations rather than the desired quantities

•     an integral and essential role for simulation and modeling  —  today’s focus



As cast = 10% special boundaries
GBETM = 71% special boundaries

Both electrodes polarized at 200 mV
for 12 days (70°C) in H2SO4.

The as cast electrode disintegrated
during the test.

The GBETM electrode maintained its
integrity.

Changing the Grain Boundary Network Improves
Performance

Poster child for grain boundary engineering:  Pb for batteries
from Ontario Hydro

Lehockey, Palumbo, Lin, and Brennenstuhl, Met. Trans. 29A (1998)
387.



Are microstructures like soap froth?

C.S. Smith, 
1951

more alike 
than unlike

late stage MgO

very unlike
yet appearances
can deceive





E  total energy
g  gb energy
n  normal
t  tangent
q  angle of normal
a  misorientation
k  curvature of  G

network of curves { G(i) } E  =  ∑  Ú
G(i) g | t | ds

local equilibrium of network dE  =  0
fi

( d2g
dq2  + g)k  =  0     on  G(i)

∑TJ(
∂g
∂q

n + gt) = 0  at  TJ's

g(q,a)  
energy

a
n = (cos q, sin q)

t

n(1)

n(2)

n(3)

Grain Growth in 2D  everything in 2D today
equilibrium theory

Herring Condition



dynamics of grain growth   Mullins
curvature driven growth dynamical problem:  
must impose boundary conditions 
use  Herring Relation,  the natural boundary condition for equilibrium

m > 0  mobility
different from tension

vanishes when
Herring holds

dynamical system is
dissipative

curvature driven growth dissipative system         trend to 
Herring Relation at TJ's         equilibrium
tends to equilibrium but still 'metastable'

vn = µ
(∂2γ

∂θ2
+ γ

)
κ on Γ(i)

∑
TJ

(∂γ

∂θ
n + γt

)
= 0 at TJ ′s

E =
∑ ∫

Γ(i)
γ|t|ds

d

dt
E = −

∑ ∫
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1
µ

(vn)2|t|ds +
∑

v ·
∑
TJ

(∂γ

∂θ
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)
= −

∑ ∫
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1
µ

(vn)2|t|ds < 0



TJ
G(2)

G(3)

G(1)y1

y3

y2

•  When  g  =  constant, Herring condition means segments

meet at  2p/3.

When  g  =  g(a), Herring condition is 'Young's Law'

•  Mullins – Von Neumann  n – 6  rule
g  =  constant, Herring condition

large grains grow and small grains shrink

•  Typically triple junctions are stable

•   Much analysis related to curve shortening, approximations of
     multiphase boundaries (Cahn Hilliard, Allen Cahn, …), and         

Wulff-type problems (Taylor, Fonseca, …)

•   Direct precursors:  
Bronsard & Reitich  short time local existence:  system satisfies 

complementing conditions,  very important!
K & Liu  long time existence close starting near a

stationary solution

dA

dt
= α(n− 6)

γ(α1)
sin(ψ1)

=
γ(α2)

sin(ψ2)
=

γ(α3)
sin(ψ3)



suggests interesting example
based on Mullins-Von Neumann n–6 rule:
deform curves conserving area and HC
< A >  = constant
although system in motion

E = min –>  no interfaces

Giant's Causeway (Ireland) probably cleavage/fracture

illustration  of metastability
of grain growth system

excursion



•  must fulfill two requirements
        accurate:  fidelity to Mullins-Herring
        statistical significance:  very large scale

•  interpret solution through statistics - only possibility

•  derive coarse grained descriptions of the simulation useful for prediction
equation satisfied by distribution function (histograms of relative area)                 
system of equations satisfied by partial distributions functions (by number of              
grain facets), which we term a master equation model

•  however other issues also intervene (will return to this):  we will have some       
dynamic statistics but we need to ascertain their 'information' content

•  identify the material - reconstruct the energy -  from the simulation?
tantalizing new features

Simulation and interpretation: strategy



simulation
calibration  γ = 1  µ = 1

evolve as network of curves: 
data structure of inferior dimension
present data structure up to 50,000 grains
evolve to 1/4 starting number (typically)
and 1600 time steps (typically)

• strategy:
    discretize energy with evolution 
    designed to maximize dissipation
    maintain Herring BC
    agrees with PDE to 2nd order in space

•  critical events:
     loss of facet (facet flipping)
     loss of small grain
     rules based on results of Monte Carlo 
     MD simulations and geometry

network of curves



First look at results
general features and diagnostics

25,000 grains
histograms at time steps

1 - 16 x 1000

surprisingly high
degree of self-similarity
robust across sample size
and system size

x

r relative 
count

relative area

time step

< area >

diagnostics

area: grows linearly in time
n-6 rule:  satisfied for individual grains

not subject to critical events
curvature:  second order accurate with 

respect to spatial discretization

(boundary condition is very important)

area grows linearly in time

least square fit



I hope that I shall not miss the point



interpret simulation:  find an equation histograms satisfy
simulated histogram is self similar over a long range but ultimately is dynamic
quantity

f(Area,t)  = g(Area/t)  self similar form
try to find by inverse methods
many theories about equations for  r,  generally have form:

possibly nonlinear transport diffusion or Fokker-Planck

Hillert
Mullins

Ryum & Hunderi

Louat

Atkinson   no known physical reason for  s
Mullins     s  cannot have origins at molecular 

time scales

but information loss/disorder can give rise to entropy
entropy in an equation is manifested by diffusion
…know from many directions

will look for F-P equation

interpretation of simulation
simulating metastable systems

relative area histograms and their
interpretation

∂ρ

∂t
= σ

∂2ρ

∂x2
+

∂

∂x

(
ψ′ρ

)∂ρ

∂t
=

∂

∂x

(
ψ′ρ

)



x

f

shape of potential  f

a.  identify an equilibrium solution

equilibrium solution  f

inverse method to discover Fokker-Planck

σ
∂2

∂x2
φ +

∂

∂x
(bφ) = 0 x > 0

⇒
φ(x) =

1
Z

exp(−ψ(x)/σ) with b = ψ′ f(x) = −log φ(x) and ψ(x) = σf(x)

can determine a pattern or shape

f

x



b.  find diffusion coefficient
recall how  r(x,t) determined

can regard the information that gives the
relative histograms as data for determining
the equation

v

variances in cells at several times

cell

histogram of empirical variances (diff coeffs) 
over simulation:  nearly constant

•• • •
diffusion coefficient  =  

and  ∆ t  =  h2  by scaling

σ =
1
2

v

∆t
= 0.17

∆t



final step:  

for derived  s  and  y solve the  F-P equation 
for time = transient time

(unable to significantly vary initial configurations

but …)

approximate b
to solve F-P
arrows point to deviations
from the differenced  f

derived  b

x (scaled)

this checks that we obtain
the correct equilibrium state

 f 
from solving F-P

 f 
from simulation

distribution

b



grain boundary
simulation histograms

solution of Fokker-Planck
simulation

 have managed to approximately capture the transient 

r

x

r

x

in fact, there are other considerations



large scale simulation
computation at 'microscale'
need to interpret

relative area histograms
one point statistics
suggests Fokker-Planck

master equation description
'mesoscale'
grain trajectories:  Mullins von Neumann n – 6 rule

interrupted by random edge loss/gain or grain
disappearance 

dA

dt
= α(n− 6)



Interpretation of system: 
at intermediate scale by master equation model

determine from the the first
few time steps of the simulation
tend to vary with  1/< area >

Fn(x,t)  =  density of n-facet grains with area x at time t

∂

∂t
Fn(x, t) + c(n− 6)

∂

∂x
Fn(x, t) = In(x, t)

Fn(Na, t) = 0, n = 3, 4, 5 and Fn(0, t) = 0 n = 6, ...
In = −pnFn + pn+1Fn+1 − (qn + rn)Fn + qn+1Fn+1 − rn−1Fn−1

pn(x,t)  =  facet loss from grain disappearance (depends on Fn(0,t))
qn(x)  =  facet loss from grain boundary flipping
rn(x)  =  facet gain from grain boundary flipping

earlier work by
  Fradkov
  Flyvberg

other descriptions:
  Monte Carlo/Potts models
  vertex models (also Henseler, Niethammer, Otto)



preliminary results

area distributions
only one difficulty

master equations give good
description of stationary 
distribution

a few statistics from the initial
time period of the evolution,
determines stationary
distribution:  
so in some fashion
can predict the stationary
distribution but do not understand
how to unravel this



Monte Carlo simulation
isotropic PDE simulation
anisotropic PDE simulation

•  stationary relative area histogram is
   extremely robust

•  relative area histograms do not
   distinguish the energy (or mobility)



Crucial role of anisotropy
is anisotropy important?

fracture toughness optimized by
specific arrangements of grains

corrosion resistance depends on
high fraction of low energy boundaries

occurence

Interrupted grain growth 
experiment on Al specimen to 
monitor change in l(∆g,n) 
(relative normal averaged over 
misorientations) during 
growth. 

what is the ideal distribution of boundaries in a well annealed sample?
all boundaries minimum energy?

cannot satisfy Herring condition
independent trials with respect to energy?

for

can verify this and confirm work of Holm et al., Upmanyu et al.

γ = γ(α), α = misorientation

ρ(α) = ekγ(α)/Z



γ = γ(θ,α)

energy depends also on normal
our’s is the first (perhaps the only) with ability 
to execute large scale simulations with  

γ(θ) = 1 + εsin2(2θ)

n

q

w1 orientation of 
grain 1

w2 orientation of 
grain 2

approximate grain boundary energy as average
of two surface energies as seen in experiments
on MgO:

γ(θ;ω1,ω2) = 1 + ε(sin2(2(θ − ω1) + sin2(2(θ − ω2))

simulation shows development of a structure
where low energy boundaries predominate

polar plot
of energy 



γ(θ) = 1 + ε sin4(2θ), ε = 0.06

fit to Boltzmann/Gibbs distribution
perfect!!!

fit to Boltzmann/Gibbs distribution
not bad!

γ(θ) = 1 + ε sin2(2θ), ε = 0.125



γ(θ) = 1 +
ε

2
(1− cos3(4θ)), ε = 0.04

fit to Boltzmann/Gibbs distribution
cannot fit

cubic spline fit to Boltzmann/Gibbs distribution
impossible



cubic spline

•  grain boundary character distribution depends on anisotropy

•  simple cases may be interpreted as independent trials with 
respect to the Boltzmann/Gibbs distribution of the energy

•  but all of our data for all of our materials show that 
distribution is not the Boltzmann/Gibbs

•  complex energy landscape enables solution to remain in a 
region of phase space from which equilibrium is inaccessible

•  understanding this issue will be a major goal of the project!


