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Is there a variational Principle for the Heat Equation?




Yes! Brezis-Ekeland (1976)

For the homogeneous heat equation in a smooth bounded domain
Q of R".

Minimize the functional

T
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/ —/(]Vu|2d:1:—|——/ VA~ |*)dx dt—l——/ lu(T)|*dx
o \2Ja 2 Ja 2 Ja

on the set

K = {u € C([0,T]; L*(Q)); /Q VA~ |*dz € L(0,T),u(0) = up}.




Euler-Lagrange equation:

However, if one shows that the infimum is actually equal to

1
inf I = —/ luo(x)|*d
K 2 0

on [0,7]




What is the trick?

u(t) + 0o (ult)) 0 ae. on [0,7]
u(0) = 0
where ¢ : H — RU {400} is a proper convex and lower
semi-continuous functional on a Hilbert space H and where Oy

denotes its subdifferential map.
Let ©* be the Legendre conjugate of ¢ on H defined as:

©*(y) = sup{(y, 2) — ¢(2); z € H},

Minimize J(0) == [ [plo(t) + " (<o(e)] dt + 5 [o(T)

on K={veC(0,T];H); go*(—cé—:) c L*0,7),v(0) = ug}.




The proof is based on a simple convex duality principle:

1d

p(ut) + 9" (=ilt)) = (u(t), —i(t)) = =5 —[u(®)]};  ae.

with equality if and only if u satisfies
—u(t) € dp(u(t)) a.e.on[0,T]

But equality is assured only if

luoll?
2 Y

which is not obvious unless we already know that the

Min{J(v);v € K} =

equation already has a solution.




To remedy the situation, we change the Brezis-Ekeland principle:

e First, we isolate a concept of self-dual variational problems

that seems to be inherent to this type of evolution equations.
Let ©(u) = @(u + ug) — (u, f) and define

| Wt + 0 (i) de+ 5O + )

which corresponds to the readily “self-dual” Lagrangian:

1 1 .
eo,er) = sllcold + sllerld and  Liu,v) = (u) +v7 (~v),

e A boundary-free variational formulation and a Banach space as

a constraint set —typically—

A3 ={u:[0,T) — H; u € Ly}




Now standard methods from the calculus of variations —properly
extended to an infinite dimensional framework— can be applied to

establish the existence of a unique minimizer.

e Self-duality always lead to zero as minimal value, so that

under the right conditions, there is a unique u such that:

I(@) = inf I(u) = 0.

e On the other hand, Fenchel-Young inequality gives that:

I(u) > |u(0)]]? for any u € A%.

It follows that @(0) = 0, while the limiting case of Young’s
inequality applied to ¢, implies that the path u(t) is a weak

solution for the evolution equation

—u(t) € 0p(u(t) +up(t)) a.e.on|0,T]




In summary: we are proposing the following variational principle
for gradient flows:

Theorem 1. Let ¢ be proper convexr and lower semi-continuous on
a Hilbert space H, with a non-empty subdifferential at 0. For any
ug € Dom(9yp) and any f € H, the following functional:

B(u) = / (p(ult) + o) + " (f — () — (ult), £) + (alt), uo)] dt

+%(\|u(0)|\§[ + [[w(DI5,) = T{fs uo)

on A%, has a unique minimum U such that @4(t) € Dom(p) — ug for
almost all t € [0,T], @y, (1) = inf @, r(u) =0, and the path
K

u(t) = u(t) + ug is a weak solution for

u(t) + 0p(u(t)) f ae. on [0,7]
u(0) Ug




The heat equation: For any ug € H}(Q) and any f € H}(Q)
the infimum of the functional

1 T 2 —1 . 2
—/°/WVWerHm@m-HVA (f — i(t,2))|?)dadt

//Uo (z)u(z,t)] dedt
(/]qu||dw—|—/]uT:cHdw)
- [ F@un(e) da

on the space

{u € C([0, 77, L*(Q)); u(t)

is equal to zero!
and is attained uniquely at a path @ € C([0,T]; L?(f2)) in such a




is a weak solution of the equation:

Au+ f on Q x[0,T]
Ug O1n Q)

= 0 on O0f.

Quasi-linear parabolic equations

For p > 1, let p(u) = %fg [VulP on Wy P(Q) and +oco elsewhere.
Its conjugate is then ¢*(v) = pp%l Jo VA~ y|7 T dz.

For any ug € W,'P(Q) and any f € L?(Q), the infimum of

p
—1

T _
o) = / / A1Vt 2) + uo@)P + P [VATL(f — alt,2)|PoT )dadt
0 QP p

T
+/0 /Q[uo(x)fa(t,:c)—f(a:)u(:v,t)]dxdt—l—%(HU(O)H%‘I‘HU(T)H%)

—T/Q f(x)ug(x) dx




on A%Q(Q) is equal to zero and is attained uniquely at an

Wy P(Q)-valued path @ such that fOT |2 (t)]|3dt < +00. The path
u(t) = u(t) + ug is a solution of the equation:

/

u(t, x) Apu+ f on Qx|[0,T]
u(0, ) ug on £

u(t,0) 0 on Of.

\




Porous media equations

Let H = H 1(Q) equipped with the norm induced by the scalar
product

(u, vy = / uw(—A) " vdr = (u,v) g-19).
Q
Consider the functional

u™ 1 on X = L™HL(Q)

i J
p(u) =4 ™ B
+00 on H™\ X,

and its conjugate




Let m > 0, then for ug € L™1(Q) and f € H~!, the infimum of

T 1
/ ( / lu + ug|™ ! —|— m ) dxdt
0 m 4+ 1

/ / uo (@) (A~ i) (t, @) — u(x,txA—lf)(x)] dadt

5 (WO, + )2, )
-7 | wola)(=8) " fla) do

on A% is equal to zero and is attained uniquely at @ such that
fo |(t)]|%dt < +o00. The path u(t) = u(t) + ug is a solution of:

u(t, x) Au™ + f on Q x[0,T]
u(0, ) ug on ).




Self-Dual Variational Problems

L:HxH— RU{+x}, (:HxH— RU{+ox}

be two convex and lower semi-continuous functions on H x H.

Associate the action functional
T
Brfu) = [ L), i(0)dt + Hu(0), u(T)
0

on the Banach space Ay, = {u: [0,T] — H; E L%} equipped
with the norm ||UHA§ = ||u(0)||g + fo HuHO‘dt)

A;I is a reflexive Banach space that can be identified with the
product space H x L%, while its dual (A% )* can be identified with

H x Lg where é + % = 1. The duality is given by:

(u, (a,p))

= (u(0),a)m + /O (alt), p(t))dt.

« B
A H X L'




Associate to the pair (¢, L), the “variation function” ¥, ;, defined
on (A%)* = H X L% as:

T
Uy r(a,y) = inf{/ L(u+y,u)dt + £(u(0) + a,u(T)) ; ue A%}
0
Bolza duality: For all p € A%,

Wy () = P, (P)

where M, m are the “Bolza-dual” Lagrangians:
M(p,s) = L*(s,p) and m(r,s) = £*(r, —s)

where L* and £* are the Legendre duals of L and ¢ respectively, and

(I)m,M(U):/O M (u, w)dt + m(u(0), u(T)).




Suppose now q € 0¥, 1,(0,0) € A%, then

Wy,1(0,0) + W] 1 (q) = 0= inf B¢ 1 + By 1r(0)

H

Self-duality: Say that the pair (L, ¢) is self-dual if for all
(r,p,s) € H?, we have

m('r, S) — g(_ra _S) and M(S7p) — L(_87 _p)7
or equivalently
(*(r,s) =4(—r,s) and L*(p,s) = L(—s,—p)

In this case, ®,, pr(u) = @y, (—u) for any wu,

We are done if the latter is non-negative!




It is the case because the following general:

“Weak duality” formula:

inf @ > inf ®,, ,
ez eLu) 2 ez (1)

combines again with self-duality ®,, rr(u) = @, r(—u) and the fact
that the constraint set is a vector space, to give:

inf @7 (u) > — inf @ p(u) =—inf @y 1 (u)

uEA‘li‘I uEA‘li‘I Ag

which means that inf,cao @y, r(u) is necessarily non-negative.




Theorem 2. Suppose L and | self-dual and W, : H X L3 — R
subdifferentiable at (0,0), then there exists U € A% such that:

(I)g’L(ﬁ) = }L{laf (I)g,L(u) = 0.

H

For gradient flows: Let ¢ : H — R be a convex and lsc. For any
ug € Dom(y), f € H, consider on A%:

o sl) = [ ) + 0 (0N dt+ 5O, + [u(DI)

where ¥ (u) = p(u + ug) — (u, f). Here

1 1 «
{fe,er) = sllcol% + sllerlf and  Liw, v) = (u) + ¥ (~v),

are clearly self-dual. However for the sub-differentiability of W, ;, at
(0,0), we need that for some v > 1 and C' > 0,

o(u) < C(1 4+ ||ull) forue H.




which is never satisfied!!!

One way to remedy this is to regularize ¢ by using inf-convolution.
That is, we define as before ¥ (u) = ¢(u + ug) — (u, f) and for each
A >0, let

Va(@) = f{9(y) + 5 e — ol v € H,

in such a way that for some C' > 0,

while its conjugate is given by

A
Vi) =47 () + Syl




The functionals ¢y now satisfy the hypothesis and therefore the

corresponding evolution equations

ux(t) + 0x(ux(t)) = 0 ae. on [0,T]
U)\(O) = 0

have weak solutions uy () in A% that minimize

Waw) = [ Wau(®) + w3 (a)] de+ 5O, + (T3

Now we need to argue that (u)), converges as A — 0 to a solution
of the original problem. This analysis is reminescent of the
approach via the resolvent theory of Hille-Yosida, but is much
easier here since the variational approach does not require the

uniform convergence of (uy)y and their time-derivatives.




