A Variational Principle for certain dissipative evolution equations

N. Ghoussoub and Leo Tzou

Pacific Institute for the Mathematical Sciences and The University of British Columbia

Fields Institute, August 2003
Is there a variational Principle for the Heat Equation?

Yes! Brezis-Ekeland (1976)
For the homogeneous heat equation in a smooth bounded domain Ω of \mathbb{R}^{n}.

Minimize the functional

$$
I(u)=\int_{0}^{T}\left(\frac{1}{2} \int_{\Omega}\left(|\nabla u|^{2} d x+\frac{1}{2} \int_{\Omega}\left|\nabla \Delta^{-1} \dot{u}_{t}\right|^{2}\right) d x\right) d t+\frac{1}{2} \int_{\Omega}|u(T)|^{2} d x
$$

on the set

$$
K=\left\{u \in C\left([0, T] ; L^{2}(\Omega)\right) ; \int_{\Omega}\left|\nabla \Delta^{-1} \dot{u}_{t}\right|^{2} d x \in L^{1}(0, T), u(0)=u_{0}\right\} .
$$

Euler-Lagrange equation:

$$
\left\{\begin{array}{cl}
\left(\frac{\partial}{\partial t}-\Delta\right)\left(\frac{\partial}{\partial t}+\Delta\right) u & =0 \quad \text { a.e. on }[0, T] \\
u(0) & =u_{0}
\end{array}\right.
$$

However, if one shows that the infimum is actually equal to

$$
\inf _{K} I=\frac{1}{2} \int_{\Omega}\left|u_{0}(x)\right|^{2} d x
$$

Then

$$
\left\{\begin{aligned}
\left(\frac{\partial}{\partial t}-\Delta\right) u & =0 \quad \text { a.e. on }[0, T] \\
u(0) & =u_{0}
\end{aligned}\right.
$$

What is the trick?

$$
\left\{\begin{aligned}
\dot{u}(t)+\partial \phi(u(t)) & =0 \quad \text { a.e. on }[0, T] \\
u(0) & =0
\end{aligned}\right.
$$

where $\varphi: H \rightarrow \mathbb{R} \cup\{+\infty\}$ is a proper convex and lower semi-continuous functional on a Hilbert space H and where $\partial \varphi$ denotes its subdifferential map.
Let φ^{*} be the Legendre conjugate of φ on H defined as:

$$
\begin{gathered}
\varphi^{*}(y)=\sup \{\langle y, z\rangle-\varphi(z) ; z \in H\} \\
\text { Minimize } \quad J(v):=\int_{0}^{T}\left[\varphi(v(t))+\varphi^{*}(-\dot{v}(t))\right] d t+\frac{1}{2}\|v(T)\|_{H}^{2} \\
\text { on } K=\left\{v \in C([0, T] ; H) ; \varphi^{*}\left(-\frac{d v}{d t}\right) \in L^{1}(0, T), v(0)=u_{0}\right\} .
\end{gathered}
$$

The proof is based on a simple convex duality principle:

$$
\varphi(u(t))+\varphi^{*}(-\dot{u}(t)) \geq\langle u(t),-\dot{u}(t)\rangle=-\frac{1}{2} \frac{d}{d t}|u(t)|_{H}^{2} \quad \text { a.e. }
$$

with equality if and only if u satisfies

$$
-\dot{u}(t) \in \partial \varphi(u(t)) \quad \text { a.e. on }[0, T]
$$

But equality is assured only if

$$
\operatorname{Min}\{J(v) ; v \in K\}=\frac{\left\|u_{0}\right\|^{2}}{2}
$$

which is not obvious unless we already know that the equation already has a solution.

To remedy the situation, we change the Brezis-Ekeland principle:

- First, we isolate a concept of self-dual variational problems that seems to be inherent to this type of evolution equations. Let $\psi(u)=\varphi\left(u+u_{0}\right)-\langle u, f\rangle$ and define

$$
I(u)=\int_{0}^{T}\left[\psi(u(t))+\psi^{*}(-\dot{u}(t))\right] d t+\frac{1}{2}\left(\|u(0)\|_{H}^{2}+\|u(T)\|_{H}^{2}\right)
$$

which corresponds to the readily "self-dual" Lagrangian:

$$
\ell\left(c_{0}, c_{T}\right)=\frac{1}{2}\left\|c_{0}\right\|_{H}^{2}+\frac{1}{2}\left\|c_{T}\right\|_{H}^{2} \quad \text { and } \quad L(u, v)=\psi(u)+\psi^{*}(-v)
$$

- A boundary-free variational formulation and a Banach space as a constraint set -typically-

$$
A_{H}^{2}=\left\{u:[0, T] \rightarrow H ; \dot{u} \in L_{H}^{2}\right\}
$$

Now standard methods from the calculus of variations -properly extended to an infinite dimensional framework- can be applied to establish the existence of a unique minimizer.

- Self-duality always lead to zero as minimal value, so that under the right conditions, there is a unique \hat{u} such that:

$$
\begin{equation*}
I(\hat{u})=\inf _{A_{H}^{\alpha}} I(u)=0 \tag{1}
\end{equation*}
$$

- On the other hand, Fenchel-Young inequality gives that:

$$
\begin{equation*}
I(u) \geq\|u(0)\|_{H}^{2} \text { for any } u \in A_{H}^{2} \tag{2}
\end{equation*}
$$

It follows that $\hat{u}(0)=0$, while the limiting case of Young's inequality applied to ψ, implies that the path $\hat{u}(t)$ is a weak solution for the evolution equation

$$
-\dot{u}(t) \in \partial \varphi\left(u(t)+u_{0}(t)\right) \quad \text { a.e. on }[0, T]
$$

In summary: we are proposing the following variational principle for gradient flows:
Theorem 1. Let φ be proper convex and lower semi-continuous on a Hilbert space H, with a non-empty subdifferential at 0 . For any $u_{0} \in \operatorname{Dom}(\partial \varphi)$ and any $f \in H$, the following functional:

$$
\begin{aligned}
\Phi(u)= & \int_{0}^{T}\left[\varphi\left(u(t)+u_{0}\right)+\varphi^{*}(f-\dot{u}(t))-\langle u(t), f\rangle+\left\langle\dot{u}(t), u_{0}\right\rangle\right] d t \\
& +\frac{1}{2}\left(\|u(0)\|_{H}^{2}+\|u(T)\|_{H}^{2}\right)-T\left\langle f, u_{0}\right\rangle
\end{aligned}
$$

on A_{H}^{2}, has a unique minimum \hat{u} such that $\hat{u}(t) \in \operatorname{Dom}(\varphi)-u_{0}$ for almost all $t \in[0, T], \Phi_{u_{0}, f}(\hat{u})=\inf _{\tilde{K}} \Phi_{u_{0}, f}(u)=0$, and the path $u(t)=\tilde{u}(t)+u_{0}$ is a weak solution for

$$
\left\{\begin{aligned}
\dot{u}(t)+\partial \varphi(u(t)) & =f \text { a.e. on }[0, T] \\
u(0) & =u_{0}
\end{aligned}\right.
$$

The heat equation: For any $u_{0} \in H_{0}^{1}(\Omega)$ and any $f \in H^{-1}(\Omega)$ the infimum of the functional

$$
\begin{aligned}
\Phi(u)= & \left.\frac{1}{2} \int_{0}^{T} \int_{\Omega}\left|\nabla\left(u(t, x)+u_{0}(x)\right)\right|^{2}+\left|\nabla \Delta^{-1}(f-\dot{u}(t, x))\right|^{2}\right) d x d t \\
& +\int_{0}^{T} \int_{\Omega}\left[u_{0}(x) \dot{u}(t, x)-f(x) u(x, t)\right] d x d t \\
& +\frac{1}{2}\left(\left.\int_{\Omega}|u(0, x)|^{2}\left|d x+\int_{\Omega}\right| u(T, x)\right|^{2} \mid d x\right) \\
& -\int_{\Omega} f(x) u_{0}(x) d x
\end{aligned}
$$

on the space

$$
\left\{u \in C\left([0, T], L^{2}(\Omega)\right) ; u(t) \in H_{0}^{1} \cap H^{2} ; \int_{0}^{T}\|\dot{u}(t)\|_{L^{2}(\Omega)}^{2} d t<+\infty\right\}
$$

is equal to zero!
and is attained uniquely at a path $\tilde{u} \in C\left([0, T] ; L^{2}(\Omega)\right)$ in such a
way that $u(t)=\tilde{u}(t)+u_{0}$ is a weak solution of the equation:

$$
\begin{cases}\frac{\partial u}{\partial t}(t, x) & =\Delta u+f \text { on } \Omega \times[0, T] \\ u(0, x) & =u_{0} \text { on } \Omega \\ u(t, x) & =0 \text { on } \partial \Omega\end{cases}
$$

Quasi-linear parabolic equations

For $p \geq 1$, let $\varphi(u)=\frac{1}{p} \int_{\Omega}|\nabla u|^{p}$ on $W_{0}^{1, p}(\Omega)$ and $+\infty$ elsewhere. Its conjugate is then $\varphi^{*}(v)=\frac{p-1}{p} \int_{\Omega}\left|\nabla \Delta^{-1} v\right|^{\frac{p}{p-1}} d x$.
For any $u_{0} \in W_{0}^{1, p}(\Omega)$ and any $f \in L^{2}(\Omega)$, the infimum of

$$
\begin{aligned}
\Phi(u)= & \int_{0}^{T} \int_{\Omega}\left(\frac{1}{p}\left|\nabla\left(u(t, x)+u_{0}(x)\right)\right|^{p}+\frac{p-1}{p}\left|\nabla \Delta^{-1}(f-\dot{u}(t, x))\right|^{\frac{p}{p-1}}\right) d x d t \\
& +\int_{0}^{T} \int_{\Omega}\left[u_{0}(x) \dot{u}(t, x)-f(x) u(x, t)\right] d x d t+\frac{1}{2}\left(\|u(0)\|_{2}^{2}+\|u(T)\|_{2}^{2}\right) \\
& -T \int_{\Omega} f(x) u_{0}(x) d x
\end{aligned}
$$

on $A_{L^{2}(\Omega)}^{2}$ is equal to zero and is attained uniquely at an $W_{0}^{1, p}(\Omega)$-valued path \tilde{u} such that $\int_{0}^{T}\|\dot{u}(t)\|_{2}^{2} d t<+\infty$. The path $u(t)=\tilde{u}(t)+u_{0}$ is a solution of the equation:

$$
\left\{\begin{array}{l}
u_{t}(t, x)=\Delta_{p} u+f \text { on } \Omega \times[0, T] \\
u(0, x)=u_{0} \text { on } \Omega \\
u(t, 0)=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Porous media equations

Let $H=H^{-1}(\Omega)$ equipped with the norm induced by the scalar product

$$
\langle u, v\rangle=\int_{\Omega} u(-\Delta)^{-1} v d x=\langle u, v\rangle_{H^{-1}(\Omega)} .
$$

Consider the functional

$$
\varphi(u)=\left\{\begin{array}{lc}
\frac{1}{m+1} \int_{\Omega}|u|^{m+1} & \text { on } \quad X=L^{m+1}(\Omega) \\
+\infty & \text { on } \quad H^{-1} \backslash X
\end{array}\right.
$$

and its conjugate

$$
\varphi^{*}(v)=\frac{m}{m+1} \int_{\Omega}\left|\Delta^{-1} v\right|^{\frac{m+1}{m}} d x .
$$

Let $m>0$, then for $u_{0} \in L^{m+1}(\Omega)$ and $f \in H^{-1}$, the infimum of

$$
\begin{aligned}
\Phi(u)= & \int_{0}^{T}\left(\frac{1}{m+1} \int_{\Omega}\left|u+u_{0}\right|^{m+1}+\frac{m}{m+1} \int_{\Omega}\left|\Delta^{-1}(f-\dot{u})\right|^{\frac{m+1}{m}}\right) d x d t \\
+ & \int_{0}^{T} \int_{\Omega}\left[u_{0}(x)\left(\Delta^{-1} \dot{u}\right)(t, x)-u(x, t)\left(\Delta^{-1} f\right)(x)\right] d x d t \\
+ & \frac{1}{2}\left(\|u(0)\|_{H^{-1}}^{2}+\|u(T)\|_{H^{-1}}^{2}\right) \\
& -T \int_{\Omega} u_{0}(x)(-\Delta)^{-1} f(x) d x
\end{aligned}
$$

on A_{H}^{2} is equal to zero and is attained uniquely at \tilde{u} such that $\int_{0}^{T}\|\dot{u}(t)\|_{H}^{2} d t<+\infty$. The path $u(t)=\tilde{u}(t)+u_{0}$ is a solution of:

$$
\left\{\begin{array}{l}
u_{t}(t, x)=\Delta u^{m}+f \text { on } \Omega \times[0, T] \\
u(0, x)=u_{0} \text { on } \Omega
\end{array}\right.
$$

Self-Dual Variational Problems

$$
L: H \times H \rightarrow \mathbb{R} \cup\{+\infty\}, \quad \ell: H \times H \rightarrow \boldsymbol{R} \cup\{+\infty\}
$$

be two convex and lower semi-continuous functions on $H \times H$. Associate the action functional

$$
\Phi_{\ell, L}(u)=\int_{0}^{T} L(u(t), \dot{u}(t)) d t+\ell(u(0), u(T))
$$

on the Banach space $A_{H}^{\alpha}=\left\{u:[0, T] \rightarrow H ; \dot{u} \in L_{H}^{\alpha}\right\}$ equipped with the norm $\|u\|_{A_{H}^{\alpha}}=\|u(0)\|_{H}+\left(\int_{0}^{T}\|\dot{u}\|^{\alpha} d t\right)^{\frac{1}{\alpha}}$.
A_{H}^{α} is a reflexive Banach space that can be identified with the product space $H \times L_{H}^{\alpha}$, while its dual $\left(A_{H}^{\alpha}\right)^{*}$ can be identified with $H \times L_{H}^{\beta}$ where $\frac{1}{\alpha}+\frac{1}{\beta}=1$. The duality is given by:

$$
\langle u,(a, p)\rangle_{A_{H}^{\alpha}, H \times L_{H}^{\beta}}=(u(0), a)_{H}+\int_{0}^{T}\langle\dot{u}(t), p(t)\rangle d t .
$$

Associate to the pair (ℓ, L), the "variation function" $\Psi_{\ell, L}$ defined on $\left(A_{H}^{\alpha}\right)^{*}=H \times L_{H}^{\beta}$ as:

$$
\Psi_{\ell, L}(a, y)=\inf \left\{\int_{0}^{T} L(u+y, \dot{u}) d t+\ell(u(0)+a, u(T)) ; u \in A_{H}^{\alpha}\right\}
$$

Bolza duality: For all $p \in A_{H}^{\alpha}$,

$$
\Psi_{\ell, L}^{*}(p)=\Phi_{m, M}(p)
$$

where M, m are the "Bolza-dual" Lagrangians:

$$
M(p, s)=L^{*}(s, p) \text { and } m(r, s)=\ell^{*}(r,-s)
$$

where L^{*} and ℓ^{*} are the Legendre duals of L and ℓ respectively, and

$$
\Phi_{m, M}(u)=\int_{0}^{T} M(u, \dot{u}) d t+m(u(0), u(T))
$$

Suppose now $q \in \partial \Psi_{\ell, L}(0,0) \in A_{H}^{\alpha}$, then

$$
\Psi_{\ell, L}(0,0)+\Psi_{\ell, L}^{*}(q)=0=\inf _{A_{H}^{\alpha}} \Phi_{\ell, L}+\Phi_{m, M}(q)
$$

Self-duality: Say that the pair (L, ℓ) is self-dual if for all $(r, p, s) \in H^{3}$, we have

$$
m(r, s)=\ell(-r,-s) \quad \text { and } M(s, p)=L(-s,-p)
$$

or equivalently

$$
\ell^{*}(r, s)=\ell(-r, s) \quad \text { and } L^{*}(p, s)=L(-s,-p)
$$

In this case, $\Phi_{m, M}(u)=\Phi_{\ell, L}(-u)$ for any u,

$$
-\inf _{A_{H}^{\alpha}} \Phi_{\ell, L}=\Phi_{m, M}(q)=\Phi_{\ell, L}(-q) \geq \inf _{A_{H}^{\alpha}} \Phi_{\ell, L}
$$

We are done if the latter is non-negative!

It is the case because the following general:
"Weak duality" formula:

$$
\inf _{u \in A_{H}^{\alpha}} \Phi_{\ell, L}(u) \geq-\inf _{u \in A_{H}^{\alpha}} \Phi_{m, M}(u)
$$

combines again with self-duality $\Phi_{m, M}(u)=\Phi_{\ell, L}(-u)$ and the fact that the constraint set is a vector space, to give:

$$
\inf _{u \in A_{H}^{\alpha}} \Phi_{\ell, L}(u) \geq-\inf _{u \in A_{H}^{\alpha}} \Phi_{m, M}(u)=-\inf _{A_{H}^{\alpha}} \Phi_{\ell, L}(u)
$$

which means that $\inf _{u \in A_{H}^{\alpha}} \Phi_{\ell, L}(u)$ is necessarily non-negative.

Theorem 2. Suppose L and l self-dual and $\Psi_{\ell, L}: H \times L_{H}^{2} \rightarrow \mathbb{R}$ subdifferentiable at $(0,0)$, then there exists $\hat{u} \in A_{H}^{2}$ such that:

$$
\Phi_{\ell, L}(\hat{u})=\inf _{A_{H}^{\aleph}} \Phi_{\ell, L}(u)=0 .
$$

For gradient flows: Let $\varphi: H \rightarrow \boldsymbol{R}$ be a convex and lsc. For any $u_{0} \in \operatorname{Dom}(\varphi), f \in H$, consider on A_{H}^{α} :

$$
\Phi_{u_{0}, f}(u)=\int_{0}^{T}\left[\psi(u(t))+\psi^{*}(-\dot{u}(t))\right] d t+\frac{1}{2}\left(\|u(0)\|_{H}^{2}+\|u(T)\|_{H}^{2}\right)
$$

where $\psi(u)=\varphi\left(u+u_{0}\right)-\langle u, f\rangle$. Here

$$
\ell\left(c_{0}, c_{T}\right)=\frac{1}{2}\left\|c_{0}\right\|_{H}^{2}+\frac{1}{2}\left\|c_{T}\right\|_{H}^{2} \quad \text { and } \quad L(u, v)=\psi(u)+\psi^{*}(-v) .
$$

are clearly self-dual. However for the sub-differentiability of $\Psi_{\ell, L}$ at $(0,0)$, we need that for some $\gamma>1$ and $C>0$,

$$
\varphi(u) \leq C\left(1+\|u\|_{H}^{\gamma}\right) \quad \text { for } u \in H .
$$

which is never satisfied!!!

One way to remedy this is to regularize φ by using inf-convolution. That is, we define as before $\psi(u)=\varphi\left(u+u_{0}\right)-\langle u, f\rangle$ and for each $\lambda>0$, let

$$
\psi_{\lambda}(x)=\inf \left\{\psi(y)+\frac{1}{2 \lambda}\|x-y\|_{H}^{2} ; y \in H\right\}
$$

in such a way that for some $C>0$,

$$
\psi_{\lambda}(x) \leq \frac{C}{\lambda}\left(1+\|x\|_{H}^{2}\right)
$$

while its conjugate is given by

$$
\psi_{\lambda}^{*}(y)=\psi^{*}(y)+\frac{\lambda}{2}\|y\|_{H}^{2}
$$

The functionals ψ_{λ} now satisfy the hypothesis and therefore the corresponding evolution equations

$$
\left\{\begin{aligned}
\dot{u}_{\lambda}(t)+\partial \psi_{\lambda}\left(u_{\lambda}(t)\right) & =0 \quad \text { a.e. on }[0, T] \\
u_{\lambda}(0) & =0
\end{aligned}\right.
$$

have weak solutions $u_{\lambda}(t)$ in A_{H}^{2} that minimize

$$
\Psi_{\lambda}(u)=\int_{0}^{T}\left[\psi_{\lambda}(u(t))+\psi_{\lambda}^{*}(-\dot{u}(t))\right] d t+\frac{1}{2}\left(\|u(0)\|_{H}^{2}+\|u(T)\|_{H}^{2}\right)
$$

Now we need to argue that $\left(u_{\lambda}\right)_{\lambda}$ converges as $\lambda \rightarrow 0$ to a solution of the original problem. This analysis is reminescent of the approach via the resolvent theory of Hille-Yosida, but is much easier here since the variational approach does not require the uniform convergence of $\left(u_{\lambda}\right)_{\lambda}$ and their time-derivatives.

