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Abstract

\begin{modestyoff}

25 years ago I proved Weyl conjecture.

\end{modestyoff}

I want to discuss some ideas leading to this proof and some

developments during these 25 years.



1 1-67 years AW (After Weyl)

1.1 The First Blood

For Laplacian H.Weyl (1911) proved that

N(λ) = c0λ
d
2 + o(λ

d
2 ) (1)

as λ→ +∞ and conjectured that

N(λ) = c0λ
d
2 + c1λ

d−1
2 + o(λ

d−1
2 ) (2)

(1) was Debye’s conjecture who derived it considering N(λ)

for Laplacian in rectangular a1 × a2 × · · · × ad-box (and then

N(λ) equals to the number of integer points in the domain

{(m1, . . . ,md) ∈ Z+ d,
m2

1
a21

+ · · ·+ m2
d

a2
d

≤ λ
π2 }



and as a Real Physicist decided that (*) must be true for

any domain.

Weyl conjecture (2) was the result of a more precise

analysis of the same problem by Weyl.



The proof of (1) by Weyl was based on this formula for

boxes and variational arguments he invented. Covering

domain by boxes



Weyl proved that

N(λ) ≥ Nnew(λ) =
∑
ι

Nι,D(λ) ≥∑
ι

c0 mesBι λ
d/2 − o(λd/2) ≥ c0(mesX − ε)λd/2

with arbitrarily small ε > 0; here ι runs inner boxes only and

N(λ) ≤ Nnew(λ) =
∑
ι

Nι,N(λ) ≤∑
ι

c0 mesBι λ
d/2 + o(λd/2) ≤ c0(mesX + ε)λd/2

with arbitrarily small ε > 0; here ι runs inner and boundary

boxes. Combining these two inequalities Weyl got (1).



Richard Courant (1924) pushing Weyl approach to its limit

proved

N(λ) = c0λ
d
2 + O(λ

d−1
2 logλ) (3)

Note O and pesky logλ.

Then generalizations , . . . generalizations ,

. . . generalizations , . . . generalizations , . . . generalizations

but no improvement until 1952



1.2 Going Tauberian

B.Levitan (1952) and V.Avakumovič (1956) proved

N(λ) = c0λ
d
2 +O(λ

d−1
2 ) (3)

but they considered Laplace-Beltrami on manifolds without

boundary!

L.Hörmander (1968) generalized (LA) (still no boundary

and only O).

J.J.Duistermaat-V.Guillemin (1975) proved Weyl conjecture

. . . but when there is no boundary! Geometric condition:

Periodic geodesic trajectories have measure 0.

Counter-example: sphere.



The approach in all these papers was Tauberian Fourier

method. Namely consider

σ(t) = Tr cos(t∆
1
2 ) =

∫
cos(λt) dλN(λ2) (4)

where ∆ is positive Laplacian.

On the other hand,

σ(t) =

∫
u(x, x, t) dx (5)

where u(x, y, t) solves

(D2
t −∆)u = 0, (6)

u|t=0 = δ(x− y), ut|t=0 = 0. (7)



So idea was to construct u(x, y, t) and then σ(t) by PDE

methods and restore N(λ) from (4).

Hörmander’s calculus of Fourier integral operators was very

useful.

σ(t) was constructed modulo smooth functions.

It appeared that

• singularity of σ(t)at t = 0 was isolated and

• sing suppσ(t) ⊂ Π where Π is the set of periods of periodic

geodesics.

While Levitan, Avakumovič and Hörmander considered only

singularity of σ(t) at 0, Duistermaat and Guillemin

considered all other singularities as well.



But Fourier Integral Operators served well far from the

boundary while near the boundary tangent trajectories

made life often difficult and often really miserable!

Grazing rays, gliding rays, rays, which touch boundary but

are neither grazing nor gliding.

It looked really bad until R.Seeley (1978) came with a new

approach!

1.3 Almost There

Seeley’s idea: it had been known (and used by

Duistermaat-Guillemin) that if we know that there are no

periodic trajectories with period less than T then

the remainder estimate would be O(T−1λ
d−1
2 ).



Duistermaat-Guillemin looked at large T but Seeley looked

at small T !

If we consider σ(t) = Tr cos(t∆
1
2 )ψ where ψ is a nice cut-off

function supported in the ball B(x, γ(x)) with

γ(x) = 1
2 dist(x, ∂X) where X is our domain and ∂X is it’s

boundary then for time T � γ propagation from this ball

does not know about boundary and contribution of this ball

to the remainder estimate will be O(T−1γdλ
d−1
2 ) which is

O(γd−1λ
d−1
2 ).

Then the total remainder estimate will be

λ
d−1
2

∫
γ(x)−1 dx (8)

where integral is actually taken over {x : γ(x) ≥ γ̄ = λ−
1
2 }



while contribution of the boundary strip {x : γ(x) ≤ γ̄} is

O(λ
d
2 × γ̄) = O(λ

d−1
2 ).

As ∂X is smooth integral
∫
γ−1 dx �

∫
γ−1 dγ mildly diverges

and one gets Courant estimate O(λ
d−1
2 logλ). Oops!

Seeley: increase T ! Consider point (x, ξ) in the phase space.

Then either trajectory launched from it is rather transversal

to the boundary or almost parallel to it:



Outgoing (green), reflected (red) and tangent (blue) rays.



In the transversal case the trajectory launched in one time

direction does not hit boundary for a while, and in the

opposite time direction it hits boundary rather transversally

and then again does not hit it for a while.

In the parallel case trajectory does not hit the boundary for

a while. So we trace everything for time T (x) which is of

the same magnitude as a length of a blue line on the

picture (green rays keep away from boundary even longer).

Then the total contribution of the inner part {x : γ(x) ≥ γ̄

does not exceed

λ
d−1
2

∫
{x:γ(x)>γ̄}

T (x)−1 dx � λ
d−1
2 (9)

because Seeley considered smooth case when

T (x) = εγ(x)
1
2 .



So, Seeley (1978): (3) with the boundary!!!!

You forgot what was (3)? Shame on you:

N(λ) = c0λ
d
2 +O(λ

d−1
2 ) (4)

2 Done!

2.1 New kid on the block

It was Winter ’78-’79 when M.Shubin and B.Levitan

suggested me to prove Weyl conjecture. I did not messed

up with spectral asymptotics before.



My idea: to invent a new approach because (I thought) if

Seeley’s method worked for Weyl conjecture then Seeley

would prove it!

I thought wrong!

Couple of years later D.Vassiliev who was sekretny�
fizik at that time gave the proof of Weyl conjecture using

Seeley’ method.

And much later I combined Seeley’ approach with my own.

But it was the best mistake I ever made!

Because the method I invented worked in many situations

Seeley’ method did not, f.e. for general systems.



2.2 Normal Singularity

First, I conjectured that singularity of σ(t) at 0 is normal

i.e. (tDt)nσ(t) at 0 have the same order of singularity for

any n exactly as for manifolds without boundary.

I proved this conjecture by implicit method of propagation

of singularities in Spring 1979.

At this moment I had a powerful method of energy

estimates with theorem stated in the form: if Ω is a

domain in the phase space and φ satisfies

microhyperbolicity condition,

and Pu is smooth in Ω ∩ {φ < 0},

and u is smooth in ∂Ω ∩ {φ < 0},

then u is smooth in Ω ∩ {φ < 0}.



Looks like Holmgren uniqueness theorem! Look at the

picture:

Ω

φ<0

Using this technique plus rescaling arguments I proved that

singularity of σ(t) at t = 0 is normal.



2.3 Successive Approximations

My next idea was rather crazy: to calculate u(x, y, t) using

successive approximations

first going in coordinates where boundary was planar and

getting operator with variable coefficients even if it

originally was not

then to the problem

(D2
t −∆)u = 0, (7)

u|t=0 = δ(x− y), ut|t=0 = 0, (8)

u|∂X = 0

apply successive approximation method freezing coefficients

of ∆ in point y.



This looks stupid because perturbation decreases

smoothness by 2 while parametrix to the problem

(D2
t −∆)u = f,

u|t=0 = ut|t=0 = 0,

u|∂X = 0

increases it only by 1, so each next term in this

approximation approach is more singular than the previous

one!

However, perturbation contains factors (xj − yj) which are

of magnitude t due to finite propagation speed and each

parametrix contains factor t due to Duhamel integral, so in

fact each next term in successive approximations acquires

an extra factor t2Dt. Big deal, so what?



But then the same is true for σ(t) as well, but for σ(t) I

knew already that near 0 each multiplication by t

compensates one differentiation and this allowed me to

justify the successive approximation method for σ(t) near 0

without justification it for u.

So, complete asymptotics (with respect to smoothness) of

σ(t) near 0 was done. This would imply Seeley’ result.

2.4 Other Singularities

It was early August 1979 and I wrote to M.Shubin about

my progress.

His answer came two weeks later (no email at that time!):

So what? Singularities at t 6= 0 are much more difficult!



But at this moment I already had a solution! Actually other

singularities were easier.

Theorem 1 If the set of periodic geodesic
billiards has measure 0 then two-term
(Weyl) asymptotics holds.

To tackle “other” singularities of σ(t) I analyzed

Duistermaat-Guillemin method purging all irrelevant FIO

stuff.

As a result arguments became very simple:

Fix any T > 0. Set of geodesic billiards periodic with

periods ≤ T is closed nowhere dense set of measure 0.

And the set of all dead-end billiards is also of this type.

Dead-end billiards are those which become tangent to the

boundary or behaving badly.



Let I = Q1 +Q2 where Q1 is a pdo with symbol in the small

vicinity of the set ΛT of all both types of bad billiards and

the vicinity of boundary and Q2 has a symbol vanishing in

the vicinity of this set.

Then σ(t) = σQ1
(t) + σQ2

(t) with σQ(t) = Tr(cos(t∆
1
2 )Q).

Here σQ2
(t) has no “other” singularities on [−T, T ] and

Tauberian methods let me to recover asymptotics of

TrE(λ)Q2 with the remainder estimate C
T λ

d−1
2 + C ′T .

Here and below E(λ) is the spectral projector of ∆, C does

not depend on T .

On the other hand, I recovered asymptotics of TrE(λ)Q1

with the remainder estimate Cελ
d−1
2 + C ′T,ε where

ε = mes suppQ1 is arbitrarily small.



So, I recovered asymptotics of N(λ) = TrE(λ) with the

remainder estimate

C
(
ε+

1

T

)
λ
d−1
2 + C ′T,ε

and the rest was a second-year calculus exercise!

3 Aftermath (68-88 AW)

Using this method I instantly proved asymptotics with the

remainder estimate O(λ
d−1
m ) for m-th order elliptic systems

on manifolds without boundaries,

and later on manifolds with the boundaries.

When I was peacefully exploiting my method and harvesting

results and even published a book but two events happened:



3.1 Corners, edges etc

I got from R� Matematika (Russian Math. Reviews but

better) some weird paper deriving Weyl asymptotics for

Euclidean Laplacian in polygons.

Author was spending a lot of efforts to consider wave

equation near vertices and I realized that this was a

completely unnecessary job!

So I decided to do a proper job and I with my student

Sveta Fedorova proved (1984) Weyl formula for

Laplace-Beltrami operators in domains with edges, vertices,

conical points, cuts etc. But what is more important:

rescaling technique was invented!

Somehow I lost the paper which inspired meand later I tried

to find it with no success. Spooky!



3.2 Going Semiclassic

I decided to go cheap and prove some semiclassic

asymptotics

I said cheap because at this time I believed as many did

that really GREAT mathematicians like Weyl,

Courant, Hörmander, Guillemin, Seeley and myself study

classic: N(λ) on compact manifolds

while less GREAT mathematicians study N(λ) for

Schrödinger with growing potential, semiclassics, etc

So I proved some semiclassical results and told M.Solomyak

about them.

He asked: Why you just do not deduct it from classics by a

cheap trick (Birman-Schwinger principle)?



I tried to follow this advice with rather surprising result.

Semiclassical results derived this way were less general than

I had already but working the opposite way I derived more

general classical results than I had

It was an eye-opener:

Semiclassical Asymptotics are most important!

So, I began to study semiclassical asymptotics as a prime

target.



3.3 Going Ballistic

First, I discovered that rescaling applied to semiclassic

produces bunch of new results.

In particular eliminating |V |+ |∇V | 6= 0 (as d ≥ 2) as a

precondition for sharp semiclassical asymptotics for

Schrödinger operator

which using cheap trick got instantly new results for

classical asymptotics.

Further I studied degenerations and singularities of different

kinds, horns and cusps, other degenerations and

singularities.



I derived classical asymptotics, asymptotics of eigenvalues

for operators generalizing Schrödinger with potential

growing at infinity, and for operators generalizing

Schrödinger with potential slowly decaying at infinity, and

these operators had their degenerations and singularities

too.

It was a complete Results Explosion! And it was easy! I was

like a prospector who found a place with native ores of gold

lying just on the surface, ready to be picked. Look at my

ICM-1986 talk!

But often remainder estimates were not as good as in the

non-degenerate or non-singular cases and I felt that the

reason was not my lack of skill but a more profound one.



3.4 Going Deeper

I modified my method to treat operators with symbols

which were operators in auxiliary spaces and treated only

some variables as Weylian and other as non-Weylian and I

reexamined some singularities and degenerations and cusps

and derived more sharp asymptotics than before. But these

asymptotics either contained non-Weylian correction terms

of the magnitude of the remainder estimates obtained on

the previous stage or even were non-Weylian in their main

parts.

I also considered Schrödinger and Dirac with strong

magnetic field.

This was longer, slower and much more difficult process

than before and its results are in my book.



3.5 Applications

This approach was applied in my and M.Sigal paper deriving

Scott correction for asymptotics of the ground state energy

for molecules consisting of very large atoms

and in my papers deriving Dirac-Schwinger correction for

such molecules

and investigating this problem if there is a strong external

magnetic field.



4 New Dawn (88-93 AW)

Last few years I have been working on sharp spectral

asymptotics for operators with not very regular coefficients.

The major tool is the same kind of analysis as before,

applied to mollified operator. Mollification scale depends on

h and equals to Ch| logh| in the simplest case. This is

related to Logarithmic Uncertainty Principle.

But it is a subject of my other talks.

One can download this and my other talks (in pdf) from

web page

http://www.math.toronto.edu/ivrii/Research/Preprints.html
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