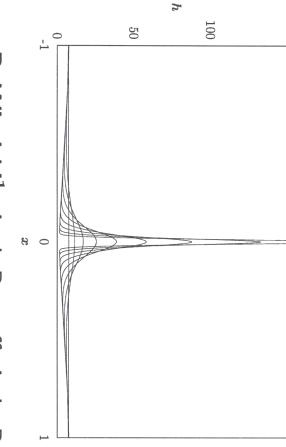
Dynamics of dissipation and blow-up for a

critical-case thin film equation



Thomas P. Witelski¹, A. J. Bernoff, A. L. Bertozzi Department of Mathematics, Duke University

- Generalized thin film equations
- Blow-up of solutions above a finite critical mass
- Droplet solutions for self-similar dynamics:

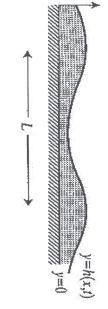
Infinite-time spreading and Finite-time blow-up

Further studies of dynamics via numerical simulations

Generalized thin film PDEs: evolution equations for the height $h=h(x,t)\geq 0$ of

thin layers of viscous fluids

$$\frac{\partial h}{\partial t} = -\frac{\partial}{\partial x} \left(h^m \frac{\partial h}{\partial x} \right) - \frac{\partial}{\partial x} \left(h^n \frac{\partial^3 h}{\partial x^3} \right)$$



The thin film equation

 $\frac{\partial t}{\partial t}$

$$\frac{\partial}{\partial x}\left(h^n\frac{\partial}{\partial x^3}\right) \qquad n\geq 0$$

Lubrication theory model for surface-tension driven spreading of viscous fluids

$$(n=3)$$

4th-order nonlinear diffusion equation

The porous medium equation

$$=\frac{\sigma}{\partial x}\left(h^m\frac{\partial n}{\partial x}\right) \qquad m\geq 0$$

Lubrication theory model for gravity-driven diffusive spreading of viscous fluids

$$(m=3)$$

The backward-in-time version

$$rac{\partial h}{\partial t} = -rac{\partial}{\partial x} \left(h^m rac{\partial h}{\partial x}
ight)$$

is a 2nd-order **ill-posed** nonlinear problem

h

Dynamics of generalized thin film equations

$$\frac{\partial h}{\partial t} = -\frac{\partial}{\partial x} \left(h^m \frac{\partial h}{\partial x} \right) - \frac{\partial}{\partial x} \left(h^n \frac{\partial^3 h}{\partial x^3} \right)$$
Destabilizing
Stabilizing

A higher-order version of the problem of blow-up in

 $h_t = h^m + h_{xx}$

Competing influences

Near-instantaneous illposed break-down

Capillary smoothing for all time

S

Bertozzi and Pugh, 1998, 2000] Resulting dynamics depends on relative strengths of terms as $h o \infty$ [(n>0)]

$$egin{array}{lll} m>n+2 & {
m Supercritical-blow-up\ can\ occur,\ }h o\infty \ & m=n+2 & {
m [Critical\ case]-depends\ on\ mass} \ & m< n+2 & {
m Subcritical-solutions\ remain\ bounded\ } orall the proof of the proo$$

Physical example: m=n= 3 - Liquid dripping(?) from a wet ceiling.

$$3 < 3 + 2 \rightarrow \mathsf{Subcritical} \rightarrow \mathsf{No} \mathsf{dripping}$$

Ž

A critical-case thin film equation: n=1, m=n+2=3

$$\frac{\partial h}{\partial t} = -\frac{\partial}{\partial x} \left(h^3 \frac{\partial h}{\partial x} \right) - \frac{\partial}{\partial x} \left(h \frac{\partial^3 h}{\partial x^3} \right)$$

Periodic boundary conditions on interval $-1 \leq x \leq 1$

Properties

1. Mass is conserved

$$M = \int_{-1}^{1} h \, dx \qquad \frac{dM}{dt}$$

 Write PDE as a generalized Reynolds equation

$$\frac{\partial h}{\partial t} + \frac{\partial}{\partial x} \left(h \frac{\partial p}{\partial x} \right) = 0$$

with Pressure is defined as

$$p=rac{1}{3}h^3+rac{\partial^2 h}{\partial m^2}$$

Energy is defined as

$$\mathcal{E} = \int_{-1}^{1} \frac{1}{2} h_{x}^{2} - \frac{1}{12} h^{4} dx$$

Energy is dissipated by the PDE

$$\frac{d\mathcal{E}}{dt} = -\int_{-1}^{1} h \, p_x^2 \, dx \le 0$$

Further properties (I): Proof of finite-time blow-up

Evolution of the second moment for the Cauchy problem:

$$\frac{d}{dt}\left(\int x^2 h \, dx\right) = -\frac{1}{2}\int h^4 \, dx + 3\int h_x^2 \, dx = 6\mathcal{E}$$

Energy is monotone decreasing, $\mathcal{E}(t) \leq \mathcal{E}_0$, so

$$\frac{d}{dt} \left(\int x^2 h \, dx \right) \le 6\mathcal{E}_0$$

If the initial energy is negative, $\mathcal{E}_0 < 0$, then the second moment becomes **negative** in finite-time

This is impossible since
$$h \geq 0 \quad \rightarrow \quad \int x^2 h \, dx \geq 0$$

Resolution of the conflict:

The solution h(x,t) ceases to exist at an earlier time

If
$$\mathcal{E}_0 < 0$$
 then $h(x,t)$ blows-up in finite-time.

[Bernoff 1998, Bertozzi and Pugh, 2000]

An upper bound on the blow-up time:
$$\left| t_c \leq rac{1}{6|\mathcal{E}_0|} \int x^2 h_0 \, dx
ight|$$

<u>م</u>

Further properties (II): Critical mass for blow-up

Consider the Cauchy problem on $-\infty < x < \infty$

$$\mathcal{E}=rac{1}{2}\int h_x^2\,dx-rac{1}{12}\Bigg|\int h^4\,dx\,\Bigg|$$

Use Sz.-Nagy's integral inequality [Sz.-Nagy, 1941]

$$\left|\int h^4\,dx
ight| \leq rac{9}{4\pi^2} \left(\int h\,dx
ight)^2 \int h_x^2\,dx$$

To yield

$$\mathcal{E} \geq rac{1}{12} \left[6 - rac{9}{4\pi^2} \left(\int h \, dx
ight)^2
ight] \int h_x^2 \, dx$$

So, if

$$\int h\,dx < \left|\,M_c \equiv 2\pi\sqrt{rac{2}{3}}\,
ight|$$

then the energy is bounded from below, $\mathcal{E}(t)>0$, and the H^1 norm and the maximum of the solution can be bounded:

no blow-up!

First-type Similarity Solutions via dimensional analysis

Rescale

$$x = \mathbf{L}\hat{x}$$

$$t=\mathrm{T}\hat{t}$$

$$h=\mathrm{H}\hat{h}$$

to yield

$$\left[rac{\mathbf{H}}{\mathbf{T}}
ight]rac{\partial \hat{h}}{\partial \hat{t}} = -\left[rac{\mathbf{H}^4}{\mathbf{L}^2}
ight]rac{\partial}{\partial \hat{x}}\left(\hat{h}^3rac{\partial \hat{h}}{\partial \hat{x}}
ight) - \left[rac{\mathbf{H}^2}{\mathbf{L}^4}
ight]rac{\partial}{\partial \hat{x}}\left(\hat{h}rac{\partial^3\hat{h}}{\partial \hat{x}^3}
ight)$$

Make the PDE scale-invariant:

Balance the spatial operators :

H = 1/L

and the time-derivative :

$$T = L^5$$

Invariant quantities = Length Time^{1/5}, Time^{1/5}Height

Similarity variables

$$\eta = rac{x-x_c}{ au} \qquad au = \left[5\sigma(t_c-t)
ight]^{1/5}$$

 x_c,t_c : translational shifts in spatial, temporal coordinates

$$h(x,t) = \frac{1}{\tau}H(\eta,s)$$
 $s = -\frac{1}{\sigma}\ln \tau$

Reformulation in similarity variables

$$H = 1/L$$
 $T = L^5$

Two classes of self-similar solutions:

$\left(i\right)$ Infinite-time spreading solutions

as
$$T \to \infty$$
 $\longrightarrow \infty$ $\longrightarrow 0$ defocusing dissipation

$\left(ii ight)$ Finite-time blow-up solutions

as
$$T \to 0$$
 $\longrightarrow 0$ $\longrightarrow 0$ $\longrightarrow \infty$ focusing blow-up

۵

Similarity PDE for $H(\eta,s)$

$$h(x,t) = \frac{1}{\tau} H(\eta,s)$$
 $s = -\frac{1}{\sigma} \ln \tau$ $\tau = [5\sigma(t_c - t)]^{1/5}$

$$rac{\partial H}{\partial s} = -rac{\partial}{\partial \eta} \left(H rac{\partial}{\partial \eta} \left[rac{1}{2} \sigma \eta^2 + rac{1}{3} H^3 + H_{\eta \eta}
ight]
ight)$$

Three cases

$$\sigma = -1$$
 infinite-time dissipation

for
$$t>t_c$$

$$\sigma = +1$$
 finite-time blow-up

for
$$t < t_{c}$$

for all t

$$\sigma=0$$
 near-equilibrium dynamics

(iii)

(ii)

(i)

$$\{s
ightarrow t, \, \eta
ightarrow x, \, H
ightarrow h \}$$

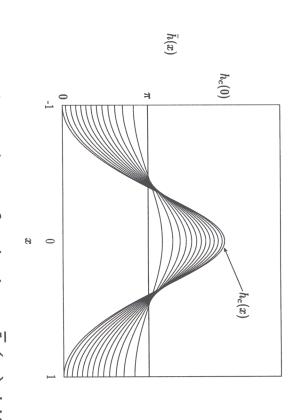
Generalized equilibria: similarity solutions and steady states

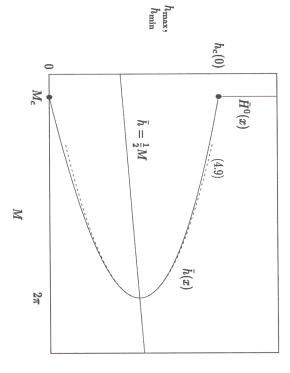
$$(i)$$
 $ar{H}^-(\eta)$ infinite-time spreading similarity soln

$$(ii)$$
 $ar{H}^+(\eta)$ finite-time blow-up similarity soln

$$(iii)$$
 $ar{H}^0(x)$ steady states

Positive periodic steady states $(\sigma=0)$ [Laugesen and Pugh 2000]





One parameter branches of solutions h(x) bifurcate from the trivial branch, $ar{h}={\sf const}$ and terminate at the compactly-supported solution $h_c(x)$.

Compactly-supported equilibrium solution $(\sigma=0)$: $h_c(x)\geq 0$ on $-1\leq x\leq 1$

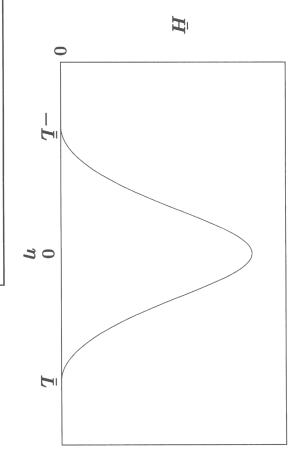
Mass

$$\int_0^1 \frac{\sqrt{6y\,dy}}{\sqrt{y(1-y^3)}} = \boxed{2\pi\sqrt{2/3} = M_c} \quad (!)$$

One-parameter, scale-invariant family of "droplet solutions"

$$ar{H}^0(x) = rac{1}{L} h_c(x/L) \hspace{1cm} L \leq 1$$

Droplet solutions: $\bar{H}^{\sigma}(\eta)$ for $\sigma=0,\pm 1$



$$ar{H}'' + rac{1}{3}ar{H}^3 + rac{1}{2}\sigma\eta^2 = ar{P}$$

$$-ar{L} \leq \eta \leq ar{L}$$

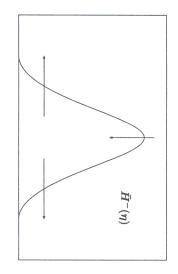
- Seek finite-mass, non-negative, compact, symmetric solutions.
- ullet Compatibility condition for $ar{m{P}}$

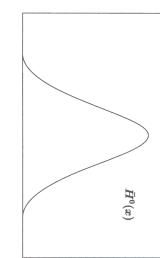
$$ar{P} = rac{1}{2ar{L}} \int_{-ar{L}}^{ar{L}} rac{1}{3} ar{H}^3 + rac{1}{2} \sigma \eta^2 \, d\eta$$

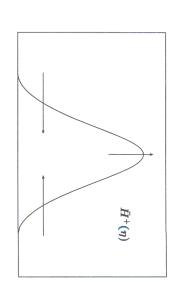
A second-order nonlocal problem.

Alternatively, can be written as a third-order ODE
$$\left[\bar{H}'''+\bar{H}^2\bar{H}'+\sigma\eta=0\right]\quad 0\leq\eta\leq\bar{L}$$

$$\bar{H}'(0) = 0$$
 $\bar{H}(\bar{L}) = \bar{H}'(\bar{L}) = 0$





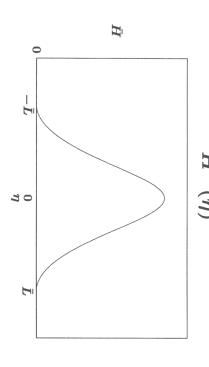


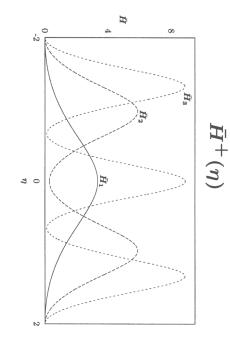
	$\bar{H}^-(\eta)$	$ar{H}^0(x)$	$ar{H}^+(\eta)$
σ	-1	0	+1
Critical Time	Infinite		Finite
Dynamics	Spreading	Steady-State	Blow-up
Mass	$0 \le M < M_c$	$M=M_{ m c}$	$M>M_c$ (*)
Energy	$\mathcal{E} > 0$	$\mathcal{E} = 0$	$\mathcal{E} < 0$
Set of Solutions	Single branch,	Unique solution,	Multiple branches,
	1-parameter (M)	Scale-invariant	1-parameter (M)
	family	x o x/L	families
Stability	Stable	Marginally Stable	1st Branch Stable,
			rest Unstable

Properties of Self-Similar Droplet Solutions

Single Spreading vs. Multiple Blow-up Solutions

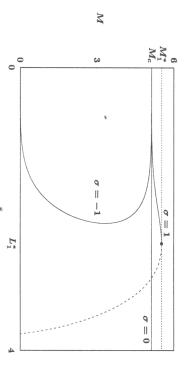
- For each $0 < M < M_c$ there is a unique single-bump $ar{H}^-(\eta)$
- For fixed $ar{L}$ there are infinitely many multi-bump $ar{H}^+(\eta)$

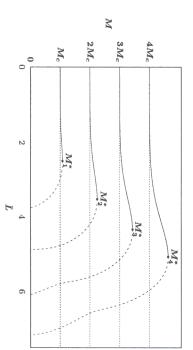




2. Mass-dependent continuous branches of solutions

- $ar{H}^\pm(\eta) o ar{H}^0(x)$ for $M o M_c$ and $ar{L} o 0$
- Discrete branches of multi-bump $ar{H}_n^+(\eta)$ for $nM_c < M < M_{u,n}$





ア

Spreading similarity solutions (I) $(\sigma = -1)$

Claim: There are only single-bump spreading droplet solutions.

1. For $\sigma=0$, the phase plane for $ig|ar{H}''+rac{1}{3}ar{H}^3-ar{P}=0ig|$ has an elliptic fixed point

at $\bar{H}_* = (3\bar{P})^{1/3}$ and a conserved quantity for all the periodic solutions

$$K = \frac{1}{2}\bar{H}_{\eta}^2 + \frac{1}{12}\bar{H}^4 - \frac{1}{3}\bar{H}_*^3\bar{H}$$

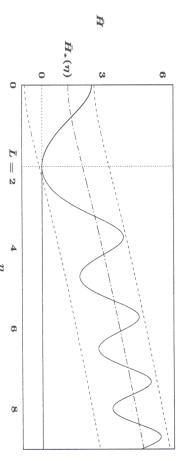
$$rac{d\eta}{d\eta}=0$$

 $ar{H}''+rac{1}{3}ar{H}^3-(ar{P}+rac{1}{2}\eta^2)=0\,|$, and define the elliptic

"pseudo-fixed point" as $ar{H}_* = (3[ar{P} + rac{1}{2}\eta^2])^{1/3} \, |$, then the solutions have

$$rac{dK}{d\eta} = -\eta ar{H} \le 0$$

oscillations decrease. Since $H_*(\eta) \nearrow$, there can be only a single minimum. That is, the solutions oscillate about H_* , but as $\eta
earrow$, the amplitude of the



~

Spreading similarity solutions (II) $(\sigma = -1)$

$$ar{H}_{\eta\eta\eta}+ar{H}^2ar{H}_{\eta}-\eta=0$$

Rescale by interval of support, $|\eta| \leq ar{L}$:

 $\eta=Lz$

Two distinguished limits for ar L o 0:

1. Small mass: $H(\eta) =$

 $ar{H}(\eta) = ar{L}^4 \mathcal{H}(z)$

 ${\cal H}^{\prime\prime\prime}-z=-ar L^{10}{\cal H}^2{\cal H}^\prime$

Source-type similarity solution of n=1 thin film eqn

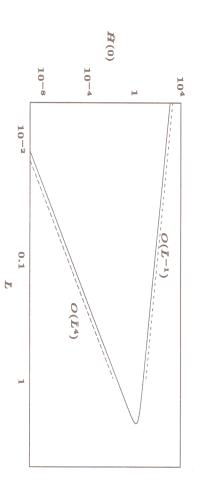
 $ar{H}(\eta) = rac{1}{24} \left(ar{L}^2 - \eta^2
ight)_+^2 + O(ar{L}^{14})$

2. Finite mass:

 $ar{H}(\eta)=\mathcal{H}(z)/ar{L}$

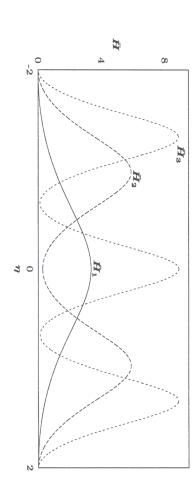
 ${\cal H}^{\prime\prime\prime}+{\cal H}^2{\cal H}^\prime=ar L^5z$

Near-equilibrium solution $\left|ar{H}(\eta)=rac{1}{ar{L}}h_c(\eta)
ight|+O(ar{L}^4)$



Finite-time blow-up similarity solutions $(\sigma=1)$

of branches of multi-bump solutions, H_1, H_2, H_3, \cdots For $\sigma=1$, the single-bump claim does not apply. In fact, there is an infinite sequence (only $oldsymbol{H_1}$ is stable)



Asymptotics for n-bump blow-up solutions, $n \to \infty$

$$ar{H}(\eta) = n \mathcal{H}(z) \qquad \eta = rac{z}{n} \qquad o \qquad \mathcal{H}''' + \mathcal{H}^2 \mathcal{H}' = -rac{1}{n^3}$$

Nearly-steady-state periodic n-bump solutions

$$ar{H}_n(\eta) = nar{h}(n\eta) + O(n^{-2})$$

 \bar{H}'

1000

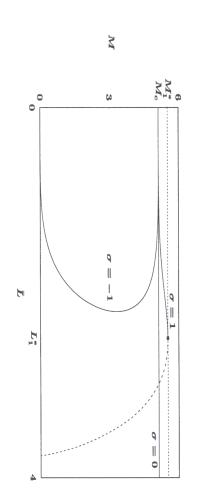
-1000

Connections between families of generalized equilibria

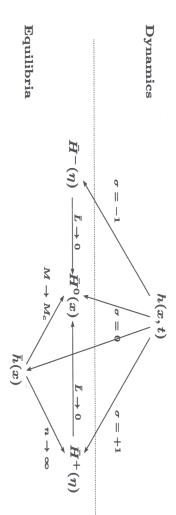
1. Near-steady-state limits

The three classes of solutions $\sigma=0, \sigma=\pm 1$ connect in the limit L o 0,

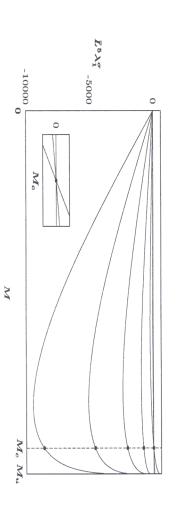
$$M \to M_c$$



2. Other connections



3. Linear stability



Insights from numerical simulations of the dynamics

1. Touch-down vs. Blow-up Singularities

As blow-up is approached, $| au h(x,t)
ightarrow ar{H}^+(\eta)|$ with compact support, $H^+(\eta)=0$ for $\eta>L$.

Regularization needed for touch-down of thin film solutions, h(x,t) o 0

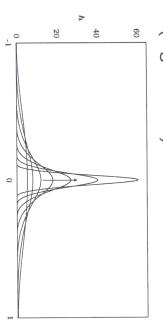
[Bernis and Friedman, 1990]

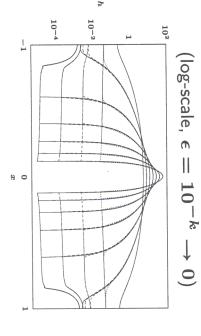
$$\frac{\partial h}{\partial t} = -\frac{\partial}{\partial x} \left(f_{\epsilon}(h) \frac{\partial p}{\partial x} \right) \qquad f_{\epsilon}(h) = \frac{h^4}{\epsilon^3 + h^3}$$

Two Routes to Blow-up

solution $h(x,t) o \infty$ with au h o 0 $(\eta > L)$ because h o 0Weak Blow-up: Touch-down first, h(x,t) o 0, then blow-up of a weak

(regular scale)



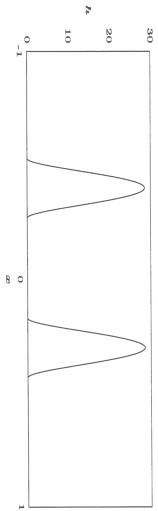


Classical Blow-up: No touch-down, $h(x,t)>h_{\min}$ with au h(x,t) o 0 $(\eta > L)$ because au
ightarrow 0 [Movie]

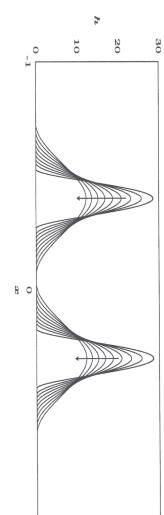
Insights from numerical simulations of the dynamics

Blow-up from the merger of subcritical solutions

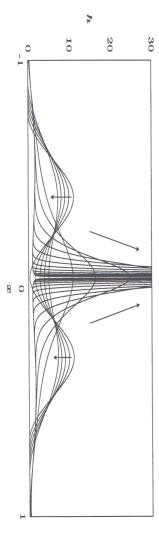
Initial data: disjoint droplets with $M_1, M_2 < M_c$



Early behavior: separate spreading via $ar{H}^-(\eta)$'s



Later behavior: merger, $M=M_1+M_2>M_c$, and blow-up via $ar{H}^+(\eta)!$



How does the σ 1 transition happen?

Insights from numerical simulations of the dynamics

Blow-up from merger of subcritical solutions (concl)

The pressure, $p=rac{1}{3}h^3+h_{xx}$

Spreading pressure waves with $p_{xx}>0$

$$ar{H}^{-}(\eta)$$
: $p(x,t)=rac{rac{1}{3}ar{H}^3+ar{H}''}{ au^3}=rac{1}{ au^3}\left(ar{P}+rac{1}{2}\eta^2
ight)$ $au-1$

Collision of pressure waves to produce a pressure maximum and $p_{xx} < 0$

For
$$\bar{H}^+(\eta)$$
: $p(x,t) = \frac{\frac{1}{3}\bar{H}^3 + \bar{H}''}{\tau^3} = \frac{1}{\tau^3}\left(\bar{P} - \frac{1}{2}\eta^2\right) \quad \tau \to 0$