Dynamics of dissipation and blow-up for a

critical-case thin film equation
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Generalized thin film equations
Blow-up of solutions above a finite critical mass

Droplet solutions for self-similar dynamics:
Infinite-time spreading and Finite-time blow-up

Further studies of dynamics via numerical simulations



Generalized thin film PDEs: evolution equations for the height h = h(x,t) > 0 of
thin layers of viscous fluids
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e Lubrication theory model for surface-tension driven spreading of viscous fluids
(n=3)

e 4th-order nonlinear diffusion equation
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The porous medium equation

e Lubrication theory model for gravity-driven diffusive spreading of viscous fluids
(m = 3)
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is a 2nd-order ill-posed nonlinear problem

e The backward-in-time version
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Dynamics of generalized thin film equations
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A higher-order version of the problem of blow-up in h: = h™ + hgqy

o Near-instantaneous
Competing influences

illposed break-down

VS

Capillary smoothing

for all time

Resulting dynamics depends on relative strengths of terms as h — oo [(n > 0)

Bertozzi and Pugh, 1998, 2000]
(

{m =mn+ 2 |Critical case

m > n + 2 Supercritical — blow-up can occur, h — oo

— depends on mass

'm<n+ 2 Subcritical — solutions remain bounded V¢

Physical example: m = n = 3 — Liquid dripping(?) from a wet ceiling.

3 < 3 4+ 2 — Subcritical —

B = =




A critical-case thin film equation: n =1, m =n+2 =3
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Periodic boundary conditions on interval —1 < x < 1

Properties

1. Mass is conserved
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2. Write PDE as a generalized
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Reynolds equation
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with Pressure is defined as

3. Energy is defined as
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Energy is dissipated by the PDE
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Further properties (1): Proof of finite-time blow-up
Evolution of the second moment for the Cauchy problem:
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Energy is monotone decreasing, £(t) < &, so

d

— \ama% < 6&
dt

If the initial energy is negative, £ < 0, then the second moment becomes negative in

finite-time.

This is impossible since h >0 — \ z’hdx >0

Resolution of the conflict:

The solution h(x,t) ceases to exist at an earlier time.

If Eg < 0 then h(x,t) blows-up in finite-time.
[Bernoff 1998, Bertozzi and Pugh, 2000]
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An upper bound on the blow-up time: |, < 6120 \HN*S dx
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Further properties (I1): Critical mass for blow-up
Consider the Cauchy problem on —oo < & < 0o
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Use Sz.-Nagy's integral inequality  [Sz.-Nagy, 1941]
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then the energy is bounded from below, £(t) > 0, and the H' norm and the
maximum of the solution can be bounded:

To yield

So, if

no blow-up!




First-type Similarity Solutions via dimensional analysis

Rescale xr = L& t="T¢ h = Hh to yield
ﬁJ oh ﬁj 9 (;50h ﬁJ 9 (;0°h
T| 88 = |L2| 0% O L4]| 8z \ 03

Make the PDE scale-invariant:

e Balance the spatial operators : H=1/L
e and the time-derivative : T =1L°
] .. Length . 1/5 .
Invariant quantities = —75» Lime Height
Time!/
Similarity variables
T —x
n=——7=[50(t—1)""

X, te: translational shifts in spatial, temporal coordinates
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Reformulation in similarity variables

H=1/L T=L°

Two classes of self-similar solutions:

(7) Infinite-time spreading solutions

as T — oo L — oo H—O0
N’ N’
defocusing dissipation

(i2) Finite-time blow-up solutions

as T — 0 L—0 H—
N’ N’

focusing blow—up



Similarity PDE for H(n, s)

1 1
h(z,t) = —H(n,s) s=—-—Int 1=[50(t.—t)]""
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Three cases
(1) o = —1 infinite-time dissipation for t > t.
(¢¢) o = +1 finite-time blow-up for t < t.

(<¢¢) o =0  near-equilibrium dynamics  for all ¢

{s »>t,n— x, H— h}

Generalized equilibria: similarity solutions and steady states

(i) H~(n) infinite-time spreading similarity soln
(i1) HT(n) finite-time blow-up similarity soln
(1) HO°(x) steady states



Positive periodic steady states (o = 0) [Laugesen and Pugh 2000]
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One parameter branches of solutions MAHV bifurcate from the trivial branch, h = const
and terminate at the compactly-supported solution h.(x).

Compactly-supported equilibrium solution (o0 = 0): he(x) >0 on -1 <z <1

Mass

1 Veéydy _
o Vy(l—y?)

One-parameter, scale-invariant family of “droplet solutions”

2 27\/2/3 = M| (!)

H(x) = WEAS\S L<1




Droplet solutions: H?(n) for o = 0,+£1
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Seek finite-mass, non-negative,compact, symm
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—L<n<L

etric solutions.
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Compatibility condition for P P = sH” + 50om”dn

—L

A second-order nonlocal problem.

Alternatively, can be written as a third-order ODE

A" + A2A' + on =0

0<n<lL

H'(0)=0 H(L)=H'(L)=0
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H~(n) H(z) H*(n)
N
H~(n) H°(z) H*(n)
o —1 0 +1
Critical Time Infinite — Finite
Dynamics Spreading Steady-State Blow-up
Mass 0< M < M, M = M, M > M. (*)
Energy E>0 E=0 E<KO

Set of Solutions

Single branch,
1-parameter(M)
family

Unique solution,
Scale-invariant

x — x/L

Multiple branches,
1-parameter(M)
families

Stability

Stable

Marginally Stable

1st Branch Stable,

rest Unstable




Properties of Self-Similar Droplet Solutions

1. Single Spreading vs. Multiple Blow-up Solutions

e For each 0 < M < M, there is a unique single-bump H ~(n)

e For fixed L there are infinitely many multi-bump H* (1)

H™(n) H™(n)

2. Mass-dependent continuous branches of solutions
e H*(n) — H(x) for M — M. and L — 0
e Discrete branches of multi-bump Mﬂ, (n) fornM., < M < M,
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Spreading similarity solutions () (o = —1)
Claim: There are only single-bump spreading droplet solutions.

H" + :H? — P = 0| has an elliptic fixed point

1. For & = 0, the phase plane for
and a conserved quantity for all the periodic solutions

_ . dK
+ LH*— tH’H — i
dn

at | H, = (3P)/3

=0

, and define the elliptic

2. Foro = —1,

. then the solutions have

H, = (3[P + 3n*)"/?

“pseudo-fixed point” as

dK _
=-nH<O0

dn
That is, the solutions oscillate about H,, but as 7, the amplitude of the

oscillations decrease. Since H,(n) 7, there can be only a single minimum.
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Spreading similarity solutions (Il) (o0 = —1)

Rescale by interval of support, |n| < L: 1 = Lz
Two distinguished limits for L — 0

1. Small mass:  H(n) = L*H(z) —  H" — z=—LYH?*H’
Source-type similarity solution of n = 1 thin film eqgn
A(n) = — (12 —n?)* |+ O(L")
24 +

2. Finite mass:  H(n) = H(z)/L —  H" 4+H*H = L°z

1 _
Near-equilibrium solution | H(n) = =h.(n) |+ O(L*)
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Finite-time blow-up similarity solutions (o = 1) 16
For o = 1, the single-bump claim does not apply. In fact, there is an infinite sequence
of branches of multi-bump solutions, Hy, Hy, H3, - - - . (only Hj is stable)

Asymptotics for n-bump blow-up solutions, n — oo
_ z 1
Hn)=nH(z) n=-—  — H'"+HH =—-——=z

n n3

Nearly-steady-state periodic n-bump solutions

H,(n) = nh(nn) |+ O(n™?)
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Connections between families of generalized equilibria

1. Near-steady-state limits

The three classes of solutions & = 0,0 = £1 connect in the limit L — O,

M — M.,

N

2. Other connections

Dynamics (=, t)
o = —1 \NWHW// o = +1
= <
H—(n) —L= mo?& =2 _ H+(n)
M — M. / \
Equilibria
h(x)
3. Linear stability
o —
S
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Insights from numerical simulations of the dynamics

1. Touch-down vs. Blow-up Singularities

e As blow-up is approached, | Th(z,t) — H™(n) | with compact support,
Ht(n)=0forn> L.
e Regularization needed for touch-down of thin film solutions, h(x,t) — O

[Bernis and Friedman, 1990]
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Two Routes to Blow-up

o Weak Blow-up: Touch-down first, h(x,t) — 0, then blow-up of a weak
solution h(x,t) — oo with Th — 0 ( > L) because h — 0

(regular scale) (log-scale, e = 10~% — 0)
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e Classical Blow-up: No touch-down, h(x,t) > Amin with Th(x,t) — 0
(n > L) because 7 — 0 [Movie]




Insights from numerical simulations of the dynamics

2. Blow-up from the merger of subcritical solutions

e Initial data: disjoint droplets with My, My < M,
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e Early behavior: separate spreading via H~(n)’s
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e Later behavior: merger, M = M, + My > M., and blow-up via H™ (n)!
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How does the 0 = —1 — 1 transition happen?
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Insights from numerical simulations of the dynamics

2. Blow-up from merger of subcritical solutions (concl)

The pressure, p = 3h® + hee

Spreading pressure waves with pgo > 0
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For H(n):  p(a,t) =*——F—=—5 (P+3n") 7—o0
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Collision of pressure waves to produce a pressure maximum and Pz, < 0
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For Ht(n):  p(z,t) = 2 3 =3 :
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