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1 Introduce modelling a toy 3

1 Introduce modelling a toy

Consider the nonlinear diffusion of u(x, t): <simtoy>

∂u

∂t
= u

∂2u

∂x2
, such that u = 0 on x = ±1 .

The decaying parabola u = u0(1− x2)/(1 + 2u0t) emerges

quickly.

Show route from fudged problem to this solution is feasible.
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Fudge the boundary conditions . . .

For γ = 1 this is the same bc:

2γu = ±(1− γ)
∂u

∂x
on x = ±1 .

For any γ the decaying parabola

u = u0(1− γx2)/(1 + 2γu0t) emerges.

Exercise: deduce similar result when the 2 on the left is

replaced by an ‘Euler parameter’ E.
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. . . and a centre manifold appears

• When γ = 0 the bcs 2γu = ±(1− γ)ux are insulating

⇒ u = u0, constant, is attractive set of equilibria.

• Decay rates λ ≈ 0,−2.5u0,−10u0,−23u0, . . .

⇒ centre manifold exists parametrised by u0 and γ:

u(x, t) = (1− γx2)u0 such that u̇0 = −2γu2
0 .

Recovers earlier solution when γ = 1 , via theory based

upon γ = 0 .

Tony Roberts, November 17, 2003



1 Introduce modelling a toy 6

Relevant: all initial conditions approach model

For all solutions u(x, t), there exits an initial u0(0) s.t.

‖u(x, t)− (1− γx2)u0(t)‖ = O(e−βt) as t →∞ .

This guarantees quick attraction to dynamics of model

u̇0 = −2γu2
0 .

Draw set of all states with same long-term evolution

<isochron>

Summary creatively manipulate the bcs to obtain this

model, via resolving structures within the domain.
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2 Boundary conditions for

discretisations

Continue with the example nonlinear diffusion of u(x, t):

∂u

∂t
= u

∂2u

∂x2
, such that u = 0 on x = ±1 .

Now divide the domain into m finite sized elements.
- x

by artificially introducing internal boundary conditions

(ibcs).
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- xt t t t t t t t tx = −1

0 1 2 · · · j − 1 j j + 1 · · · m + 1

x = 1

Let u = vj(x, t) be the field in the jth element, then

∂vj

∂x

∣∣∣
xj−h/2

=
∂vj

∂x

∣∣∣
xj+h/2

= 0

ensures each element is insulated from its neighbours.

Diffusion in each element causes exponential decay to an

arbitrary constant, say uj, reflecting the zero eigenvalue.

Centre manifold theory models perturbed dynamical

systems: perturb by funny coupling between elements.
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Parametrise inter-element coupling with γ

vj(xj, t)− vj(xj−1, t) = γ(uj − uj−1) , (1)

and vj(xj+1, t)− vj(xj, t) = γ(uj+1 − uj) , (2)

The ibc (2) is the right-hand side ibc of each element and

the ibc (1) is the left (same for all problems):

• when γ = 0 these ibcs effectively insulate each element

from its neighbours (as lhs ≈ ∂u
∂x
|xj±h/2); whereas

• when γ = 1 they assert that the field in the jth element

analytically extends to the neighbouring grid values.
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Centre manifold theory assures:

existence there is an m-dimensional model parametrised

by the m grid values uj

u(x, t) = v(u, x, γ) such that u̇j = gj(u, γ) ; (3)

relevance the model is exponentially quickly attractive to

all nearby solutions of the pde (no h qualification);

construction it is correct to substitute (3) and solve pde

asymptotically. (routine <blowi_r>)
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Include the Dirichlet BC

(1) at the left-hand end j = 1 ,

v1(x1, t)− v1(x0, t) = γu1 : (4)

• when the coupling parameter γ = 0 this effectively

insulates the first element from the conditions at the

domain boundary; whereas

• when γ = 1 this reduces to requiring v1(x0, t) = 0 .
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Computer algebra solves the pde in elements, using

intra-element variable ξ = (x− xj)/h:

v1 = u1 + 1
2
γ[u2ξ + (u2 − 2u1)ξ

2] +O(γ2) ,

v2 = u2 + 1
2
γ[(u3 − u1)ξ + (u3 − 2u2 + u1)ξ

2] +O(γ2) ,

and so on.

This looks like simple Lagrange interpolation (when γ = 1).

Actually, leading terms in a sophisticated resolution of

physical subgrid structures — good answer to upscaling.
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The evolution gives the holistic discretisation:

u̇1 =
γ

h2
u1(u2 − 2u1)

+
γ2

12h2
(−3u1u2 + 3u2

2 − u2u3) +O(γ3) ,

u̇2 =
γ

h2
u2(u3 − 2u2 + u1)

+
γ2

12h2
(3u2

1 − 3u1u2 + 2u1u3 − 3u2u3 + 3u2
3 − u3u4)

+O(γ3) ,

and so on. See modified simple discretisation.

The same bandwidth across the whole domain.
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Include boundary forcing a(t)

(4) replaced by v1(x1, t)− v1(x0, t) = γ(u1 − a(t)) . (5)

A subgrid field, as if u0 = a (first line) but:

v1 = u1 + 1
2
γ[(u2 − a)ξ + (u2 − 2u1 + a)ξ2]

+
γh2ȧ

24u1

(ξ + 1)ξ(ξ − 1)(ξ − 2)

+O(γ2, ä) ;

the time derivatives of a represents some of the nonlinear

diffusion into the finite sized elements.
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The evolution reflects the diffusive time lag:

u̇1 =
γ

h2
u1(u2 − 2u1 + a)− γ

12
ȧ

+
γ2

12h2
(a2 − 2au1 + 2au2 − 3u1u2 + 3u2

2 − u2u3)

+
γ2ȧ

720u1

(25a− 6u1 − 35u2) +O(γ3, ä) .

Summary: This centre manifold approach brings

boundary conditions and interior modelling into the one

systematic framework.
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2.1 Higher dimension—shear dispersion

c(x, y, t)
concentration

diffusion
cross-stream6

?u(y)
advection-

-
-

-

-

-

-

-

-

-
y

x

6
-

∂c

∂t
= −P 3

2
(1− y2)

∂c

∂x
+ ∇ ·

[
(1− y2)∇c

]
.
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vj(xj+1, y)− vj(xj, y) = γ [vj+1(xj+1, y)− vj(xj, y)] .

c(x, y, t)
concentration

diffusion
cross-stream6

?u(y)
advection-

-
-

-

-

-

-

-

-

-
y

x

6
- t t t t t

cj−1(t) cj(t) cj+1(t)

xj−1 xj xj+1
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c = cj + γ

[
ξ +

P
4h

y2

]
µδcj

+ γ

[
1

2
ξ2 − 1

6h2
y2 +

Ph

4
(ξ3 − ξ)

]
δ2cj +O(γ2,P2) ,

Tony Roberts, November 17, 2003
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Evolution: the discretisation is formed by further

iteration to γ2 terms in the element coupling:

∂cj

∂t
=

2

3h2

(
γδ2 − γ2

12
δ4

)
cj + (γ − γ2)

P2

8
δ2cj+γ2 P2

30h2
δ2cj

− P
h

(
γµδ − γ2

6
µδ3

)
cj − γ2 2P

45h3
µδ3cj

+ γ2

(
2

135
+
P2h2

72
− P2h4

20

)
1

h4
δ4cj +O(P3, γ3) :

= x-diffusion + stabilisation + shear dispersion

+ advection + skewness term

+ kurtosis + h.o.t.

See that when evaluated at γ = 1:

Tony Roberts, November 17, 2003



2 Boundary conditions for discretisations 20

• the first term on the right-hand side is an O(h4)

estimate of the longitudinal diffusion;

• the second term, if truncated to errors O(γ2), would

stablise the discretisation for large advection (P), but

here truncated to errors O(γ3) disappears to leave

• the third term approximates shear dispersion;

• whereas the fourth term (the first on the second line

above) is an O(h4) estimate of the longitudinal

advection at mean velocity P ;

• the fifth term contributes to the skewness;

• and lastly the sixth term is kurtosis and stabilises.

Tony Roberts, November 17, 2003
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Summary: Shear dispersion appears at finite h because

we resolve subgrid physical processes.

Tony Roberts, November 17, 2003
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3 Continuum models—shear

dispersion

Get Taylor model, pde, as grid size h → 0 .

Such spatio-temporal models (pdes) require bcs:

• dispersion in a river at the the inlet/outlet;

• beams at each end;

• Ginzburg-Landau equations;

• and so on.

Tony Roberts, November 17, 2003
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bcs provided by two separate arguments; both rely on

investigating the spatial evolution away from the boundary

into the interior (aka Mielke and Iooss).

Both rely on the “initial condition” at the boundary being

projected onto the interior model.

Tony Roberts, November 17, 2003



3 Continuum models—shear dispersion 24

3.1 Use an interior model of shear

dispersion

C(x, t) is the cross-stream average concentration,

concentration field assuming ∂/∂x is small:

c(x, y, t) = C +
1

120

(
−15y4 + 30y2 − 7

) ∂C

∂x
+ · · · ;

Tony Roberts, November 17, 2003
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where the mean concentration evolves

∂C

∂t
= −∂C

∂x
+D

∂2C

∂x2
+E

∂3C

∂x3
+· · · , D =

2

105
, E =

4

17325
.

Holds far away from the inlet and outlet.

These infinite sums converge in some sense.

What are the appropriate boundary conditions to be used at

inlet x = 0 , and outlet x = L? for various truncations?

Explore the third order model [comment twisty pipe]:

∂C

∂t
= −∂C

∂x
+ D

∂2C

∂x2
+ E

∂3C

∂x3
. (6)

Recast in terms of spatial evolution U = C , V = Cx and

Tony Roberts, November 17, 2003
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W = Cxx :

∂U

∂x
= V ,

∂V

∂x
= W ,

∂W

∂x
=

1

E
U − D

E
V +

1

E

∂U

∂t
.

Assume time derivative ∂/∂t is small perturbation

corresponding to slow evolution.

The unperturbed system has spatial evolution ∝ eλx :

• λ1 = 0 of the slow evolution in interior;

• λ2 = 36.42 of rapid transients near the outlet x = L ;

• λ3 = −118.9 of even more rapid transients near the

inflow at x = 0 .

Tony Roberts, November 17, 2003
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3.2 First of two principles:

the rapid transients must be removed as they are not

physical in a slowly varying model.

Here gives two boundary conditions for the model (6):

• an inlet to eliminate e36.42 x ; and

• an outlet to eliminate e−118.9 x .

Generically require the model to lie in the

centre-unstable manifold of the spatial evolution away from

a boundary into the interior:

Tony Roberts, November 17, 2003
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centre-unstable manifold has no transients near boundary,

and far bcs removes any “unstable dynamics.”

Tony Roberts, November 17, 2003
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3.3 Use the physical dynamics

The concentration c(x, y, t) evolves:

∂c

∂t
= −u(y)

∂c

∂x
+

∂2c

∂x2
+

∂2c

∂y2
.

Tony Roberts, November 17, 2003



3 Continuum models—shear dispersion 30

Rewrite for spatial evolution with c′ = cx :

∂c

∂x
= c′ ,

∂c′

∂x
= −∂2c

∂y2
+ u(y)c′ +

∂c

∂t
,

Focus on slow evolving solutions for which ∂/∂t ≈ 0 ; the

spatial evolution has eigenvalues

• one λ = 0 of the slowly varying shear dispersion model

∂C

∂x
= −∂C

∂t
+

2

105

∂2C

∂t2
− 116

121275

∂3C

∂t3
+ · · · ;

• λ = −3.414 , −12.25 , . . . of rapid transients;

• and infinitely many positive eigenvalue transients.
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At the inlet there cannot be any component of the last

positive eigenvalue modes as these would blow up in the

interior.

However, the physical inlet condition typically will have

spatially decaying transients. For example, a pipe may be

discharging waste into the side of the channel at x = 0 .

The effective inlet condition for the cross-stream average

concentration C(0, t) is the value after these transients

have died out.

Use the adjoint eigenmode of λ = 0 to project the physical

inlet condition to a boundary condition for the model.
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Generically, the second principle of reality:

Tony Roberts, November 17, 2003
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1. the physical fields must lie in the centre-stable

manifold of the spatial evolution away from the

boundary;

2. the physical boundary conditions intersect a set of

states on the centre-stable manifold;

3. “initial condition” arguments project these states onto

the slow manifold of the interior model along

isochrons; <isochron>

4. the codimension of the projected set is effectively the

number of boundary conditions for the model.
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At the outlet of the channel the codimension is zero, so

there is not another boundary condition for the model.

The transients in negative x direction are the complete

modes of the positive eigenvalues.

These fit any physical outlet condition, exponentially

quickly in space.

The physical outlet places no restriction on the model (6).

Great because we already have three bc.
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4 Conclusion

Two different scenarios:

• direct modelling of divided and reglued space naturally

adapts to physical boundaries at finite grid size by

resolving subgrid fields;

• “spatial dynamics” provides a completely different

mechanism for resolving the influence of “transients”

we otherwise know as boundary layers.

Moreover, . . .
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State space arguments derive accurate and reliable

low-dimensional models of spatio-temporal dynamics from

a detailed description:

• the signature of the model is derived from linearisation;

• the modelling is systematically refined;

• produces appropriate boundary conditions.

Lastly, there also exists a third approach: it is

completely unclear to me as to whether these disparate

approaches produce equivalent boundary conditions!
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