An Organizing Center for Tracefiring in the Oregonator

Building blocks and instability

Jens Rademacher
School of Mathematics, University of Minnesota
Research supported by NSF, MSI

Backfiring and Tracefiring

[Annamalai et al '99] countercurr. flow reactor

MB model

[Otterstedt et al '98] active/passive cobalt

MB model for Co-ox. on Pt110: [Bär et al '94]

2-state / 3-state Calcium and ${\rm IP}_3$ -receptor [Sneyd et al '00]

CICR [Snita et al '00]

Tracefiring in the Oregonator model

Two characteristic speeds:

- pulse-chain ~ 3.4 (sink) ω -limit: invading pulse-chain
- defect ~ 0.6 (source) ω -limit: rest state connected to space-time periodic

Kinetics parameter $\phi \sim$ light intensity \sim excitability (b.c. in comoving frame: left Neumann, right Dirichlet)

Spatial Dynamics

Constituents of pulse splitting, (back-) tracefiring

$$U \in \mathbb{R}^N, \quad U_t = DU_{xx} + F(U; \phi)$$

$$\xi = x - ct \rightarrow U_t = DU_{\xi\xi} + cU_{\xi} + F(U; \phi)$$

equilibria in these coordinates satisfy travelling wave ODE

$$0 = DU_{\xi\xi} + cU_{\xi} + F(U; \mu) \Leftrightarrow$$

$$u_{\xi} = f(u; c, \phi) = f(u; \mu), \quad u \in \mathbb{R}^{2N}$$

bounded ODE solution $\ \leftrightarrow \$ travelling wave, speed c

homoclinic ★ → pulse ✓

n-homoclinic \leftrightarrow n-pulse \nearrow

heteroclinic: pulse-train invading pulse-chain to equilibrium

T-point in other models

Organizing Center: Constituents exist nearby, pulse loses stability nearby

MB [Zimmermann et al '97], Ca-flow [Sneyd et al '00] models:

Codim-2 heteroclinic cycle between two equilibria

(T-point [Glendinning, Sparrow '86])

Interaction of pulse and equilibrium: plateau in pulse's wake

from other, (absolutely) unstable rest state

Instability: MB [Sandstede, Scheel '00], Ca [Romero, Jones '03]

What happens in the Oregonator?

The light-sensitive Oregonator model

$$u_t = D_u u_{xx} + (u(1-u) - v(u-q))/\epsilon$$

$$v_t = D_v v_{xx} + (fw + \phi - v(u+q))/\delta$$

$$w_t = u - w$$

$$D_v = 1.12$$
, $\epsilon = 0.09$, $\delta = \epsilon/8$, $q = 0.001$, $f = 1.5$

Chemical species in \mathbb{R}^3 : $u \sim$ bromous acid, $v \sim$ bromide, $w \sim$ catalyst Travelling wave ODE in \mathbb{R}^5 ($c \approx 3.4$):

$$u_{\xi} = \tilde{u}$$

$$\tilde{u}_{\xi} = -cu_{\xi} - (u(1-u) - v(u-q))/\epsilon$$

$$v_{\xi} = \tilde{v}$$

$$\tilde{v}_{\xi} = -(cv_{\xi} + (fw + \phi - v(u+q))/\delta)/D_{v}$$

$$w_{\xi} = (w-u)/c$$

Bifurcations and Tracefiring Onset

Hopf-bifurcations of kinetics ODE and travelling wave ODE, and path of homoclinic - instability when *decreasing* ϕ :

Periodic or Neumann boundary conditions: transient tracefiring Dirichlet b.c. ahead of primary pulse: permanent tracefiring

Organizing Center for Oregonator's Tracefiring

Idea: codim-2 heteroclinic cycle with *periodic* orbit

Oregonator Morse indices:

$$i(p_0) = \dim(W^{\mathrm{u}}(p_0)) = 3$$
, $i(\gamma) := \dim(W^{\mathrm{cu}}(\gamma)) = 2$

Generally for ODE in \mathbb{R}^n :

periodic orbit: $i(\gamma) \ge 2$, $\dim(W^{\mathrm{sc}}(\gamma)) = n - i(\gamma) + 1 \ge 2$

codim-2: $i(p_0) = i(\gamma) + 1 \rightarrow i(p_0) \ge 3$

get 2D transversality: $i(p_0) + \dim(W^{\mathrm{sc}}(\gamma)) = n + 2$

for heteroclinic cycle: $\dim(W^{\mathrm{s}}(p_0)) \geq 1 \rightarrow n \geq 4$

Such cycles have recently been found in other models [Sieber '02, Sneyd '03].

Existence of Constituents near Organizing Center

Theorem (R.)

Assume such a heteroclinic cycle with maximal transversality. Then a family of curves of locally unique 1-pulses exist, emanating from heteroclinic cycle in parameter space.

(Also for other codim and more general heteroclinic nets.)

Assume in addition $W_1:=\mathrm{W}^\mathrm{u}(p_0)\cap\mathrm{W}^\mathrm{cs}(\gamma)$ contains a curve homotopic to γ in $W_1\cup\gamma$ (holds e.g. near spatial Hopf Bifurcation). Then nearby a smooth curve of unique 1-pulses exist, which emanates from the heteroclinic cycle.

Under Shil'nikov condition a (family of) curve(s) of n-pulses, and invading pulse-chain exists. (In Oregonator pulses are Shil'nikov-type and γ close to spatial Hopf bifurcation).

Idea of Proof: Adapt Lin's Method

- 1. Seek solutions near the heteroclinics and 'glued' close to γ
- 2. Match these away from γ with un/stable manifolds from p_0

Problems here:

- by phase shift: lack of hyperbolicity (essential spectrum)
- periodic distance of forward vs. backward approach to γ

Spectra of Pulses on Large Bounded Domains

and approaching heteroclinic bifurcation

Theorems [Sandstede, Scheel '00] Typically:

- point spectrum from unbounded domain persists
- point spectrum for increasing domain length clusters: near essential spectrum $\Sigma_{\rm ess}$ for *periodic* b.c. near absolute spectrum $\Sigma_{\rm abs}$ for *separated* b.c.
- If stable pulse approaches heteroclinic orbit with absolutely unstable equilibrium (or periodic orbit) p_2 , then its critical point spectrum clusters near absolute spectrum of p_2 .

 $\Sigma_{\rm abs}$: Solutions ${\rm e}^{\lambda t + \nu_1 \xi}$, ${\rm e}^{\lambda t + \nu_2 \xi}$ with ${\rm Re}(\nu_1) = {\rm Re}(\nu_2)$ and index condition. Distinguishes absolute and convective instabilities.

Spectra in the Oregonator

Spectra of p_0 (base state)

Spectra of γ for ϕ near onset

Observations

- $\Sigma_{\rm ess}(p_0)$ is already unstable: convective instability of pulse on unbounded domain or Neumann b.c. *not* onset of tracefiring
- $\Sigma_{\rm abs}(p_0)$ remains stable: no absolute instability of background
- $\Sigma_{\rm ess}(\gamma)$, and in particular $\Sigma_{\rm abs}(\gamma)$ unstable

Framework for Oregonator's Tracefiring Instability

Conclusions in light of organizing center idea

Assuming stable isolated point spectrum, the pulse becomes unstable when approaching the organizing center with absolutely unstable γ . In fact, winding around γ increases Morseindex. Similar for n-pulses.

Geometric indication of real-type absolute instability:

Theorem (R.)

All assumptions of theorem 1. Path of homoclinic spirals (logarithmically) into point of heteroclinic cycle, if and only if $0 \in \Sigma_{abs}$ and Σ_{abs} unstable.

Idea of proof

Use Floquet form of variation about γ and to compute leading order expansion of homoclinic path. This oscillates, if and only if $0 \in \Sigma_{abs}$ and Σ_{abs} unstable.

Discussion

- several models exhibit tracefiring (or backfiring)
- Oregonator's transient tracefiring permanent with mixed b.c.
- idea for organizing center of Oregonator's tracefiring instability:
 theory and observations are coherent, and analogous to T-point:
 - constituents exist in unfolding
 - instability caused by abs. unstable 'wiggles' in pulse's wake
 - spiraling path (saddle-nodes) iff real-type absolute instability

Perspectives

- apply analytic method to bifurcations in other heteroclinic networks with periodic orbits
- periodic nature of tracefiring (also for T-points)

Spectra and Stability

For a solution U_* to $U_t=DU_{\xi\xi}+cU_{\xi}+F(U;\phi)$, we say $\lambda\in\mathbb{C}$ is in the spectrum $\Sigma(U_*)$ of U_* , if

$$\mathcal{T}(\lambda) = (\lambda - D\partial_{\xi\xi} - c\partial_{\xi} - \partial_{U}F(U_{*}))$$

is not boundedly invertible.

We say $\lambda \in \Sigma(U_*)$ is in the point spectrum, if $\mathcal{T}(\lambda)$ is Fredholm with index 0; otherwise λ lies in the essential spectrum $\Sigma_{\mathrm{ess}}(U_*)$. Travelling waves spectra can be characterized in terms of exponential dichotomies of

$$v_{\xi} = \left(\partial_{u} f(u_{*}(\xi); \mu) + \lambda \begin{pmatrix} 0 & 0 \\ -\text{Id} & 0 \end{pmatrix}\right) v$$

Here spectral stability ($\text{Re}(\Sigma(U_*)) < 0$) implies nonlinear stability.