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I. Introduction

     Below threshold

Top




plate is cold

Bottom plate is hot




Above threshold

Convection has set in







Figure 1: The Rayleigh-Bénard experiment (M. Wu, G. Ahlers, & D.S. Cannell, Phys. Rev. Lett. 75, 1743-1746

(1995); K.M.S. Bajaj, N. Mukolobwiez, N. Currier, & G. Ahlers, Phys. Rev. Lett. 83, 5282-5285 (1999) )



Convection in a large box

Types of patterns (in Boussinesq fluids) :

¦ Straight rolls : with dislocations and amplitude grain boundaries (R/RC ≤ 5) ;
A becomes active at defect cores

,

Figure 2: From J. Liu, K.M.S. Bajaj, and G. A., unpublished.



¦ Labyrinths : (P À 1, R/RC À 1) ; Phase grain boundaries (PGB) meet at
concave and convex disclinations

Figure 3: From M. Assenheimer and V. Steinberg, Europhysics News, 27, 125 (1996).

¦ Target patterns : (P ≥ 3, R/RC À 1) ; mean flow is small;

Figure 4: From M. Assenheimer and V. Steinberg, Phys. Rev. Lett. 70, 3888 (1993)



¦ Spirals : (P ≤ 3, R/RC À 1); V becomes active

Figure 5: From J. Liu, K.M.S. Bajaj, and G. A., unpublished.

¦ Hexagons : (P ≥ 1.2, R/RC ≥ 2, k < kc) with larger wavelength than that
of coexisting rolls.

Figure 6: From Assenheimer and Steinberg, Phys. Rev. Lett. 76, 756. (1996)



Typical patterns can be described by three main order parameters

¦ local wavevector(s) ki = ∇θi (i > 1 for multiphase planforms)

¦ amplitude A (slaved to k when R/Rc À 1)

¦ mean flow V ; advects the phase contours ; disappears at infinite Prandtl
number



Convective patterns : several approaches

• Modulational description :

(Newell-Whitehead-Segel ; Ginzburg-Landau)
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(i) Removes fast spatial and temporal scales ; order parameter = envelope
of the rolls (complex variable): A

(ii) Asymptotics with distance to threshold as expansion parameter

(iii) Limited to a neighborhood of straight parallel rolls of a given direction

(iv) Describes the formation of dislocations ; core structure not exact



• Large-scale horizontal dynamics :

(Swift-Hohenberg)

wt = −(1 + ∆)
2
w + Rw − w

3
,

(i) Removes fast time ; Galerkin expansion in the vertical direction ; no
scaling on the horizontal ones

(ii) Order parameter = vertical velocity (real variable): w

(iii) Expansion close to threshold ; necessity to simplify the equations ; in
particular nonlinearities are “localized” in real space

=⇒ description no longer quantitative

(iv) Isotropic description ; describes the formation of all defect types.



• Further reduction : the phase formalism

(Pommeau-Manneville)
ΘT −D⊥(k0)ΘY Y −D||(k0)ΘXX = 0

(i) Get rid of the fast time scale associated with amplitude relaxation

(ii) Expressing the slaving of the amplitude to the wavevector in NWS, one
obtains an equation for the phase (real order parameter)

(iii) Formalism still limited to a fixed direction, close to threshold

(iv) Cannot describe defect formation



• The phase diffusion equation

(Cross-Newell)
τ(k)ΘT −∇ · (kB(k)) = 0

(i) Direct derivation from the microscopic system ; small parameter =
inverse aspect ratio

(ii) Description quantitatively valid far from onset

(iii) Preserves isotropy ; can describe all stationary defects with emphasis
on topology and far field ; core structure reduced at the microscopic scale.

(iv) Cannot describe the formation of defects (up to now), only their
stationary structure.



II. The phase diffusion equation

Figure 7: From Y.-C. Hu, R. Ecke, and G. Ahlers, Phys. Rev. E 51, 3263 (1995).



• Outline of the method :

Consider locally (spatially) periodic straight parallel rolls ; the wavevector k
varies slowly over a distance ε−1, which defines slow scales X = εx and T = ε2t.
Each field is expanded in the form w = f(θ, z; A) + εw1 + ε2w2 + · · ·.

A slow phase is defined as Θ =
∫

k(X, T )dX = εθ

Calculate f(θ, z; A) : fully nonlinear solution, using Galerkin expansion.
Leads to a relation A(k) : at sufficiently large value of R, the Rayleigh number,
the roll amplitude is algebraically slaved to the wavenumber. Close to threshold,
A becomes free.

The iterates wi are calculated by linearization about f =⇒ solve
inhomogeneous singular linear systems Lwi = Ri.

(a) Translational invariance =⇒ L∂f
∂θ = 0

(b) Pressure defined up to arbitrary constant Ps (mass conservation) =⇒ L ∂f
∂Ps

= 0

(c) For k = kl and k = kr only (the borders of the marginal stability band) L∂f
∂A = 0



Solvability conditions 〈wA|Ri〉 = 0 :

(a) =⇒ phase equation (at order ε)

(b) =⇒ mean flow equation (at order ε2)

(c) =⇒ Partial differential equation for the amplitude close to onset (or near
dislocation cores)



Difficulty : need to calculate w1 exactly to get mean flow equation

→ use SVD : L = UDV T

System : phase diffusion / mean flow equations (with Souli, JFM 220, 187 (1990))

ΘT + ρ(k)V · ∇Θ +
1

τ(k)
∇ · kB(k) = 0

∇×
{

k̂α(k)(k̂ ×∇Ψ) · ẑ
}
· ẑ −∇ · k̂β(k)k̂ · ∇Ψ =

ẑ · ∇ ×
{

σk∇ · kA
2 − k̂

τα(k)
∇ · kBα(k)

}
−∇ · k̂(∇× kBβ(k)) · ẑ

Ω(k, A; R, P ) = 0

where V = ∇×Ψẑ is the horizontal mean flow, k̂ = k
k, σ = P−1.

V is zero at infinite Prandtl number and in absence of curvature gradient.



When P = ∞ one has

ΘT − kD⊥(k)∇ · k̂ −D||(k)k̂ · ∇k = 0

with

D||(k) = −1
τ

d
dkkB(k) = 0 → Eckhaus instability

D⊥(k) = −1
τB(k) = 0 → Zig-zag instability



• Results :

(i) The shape of kB(k) is universal ; its zeros and extrema (possibly modified by the mean

flow) give the frontiers of the Busse balloon relative to long-wave instabilities
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(ii) Curvature selects the roll wavenumber kB s.t. B(kB) = 0 ; good agreement with

experiments

(iii) Because of sidewall boundaries, patches of circular rolls dominate. Circular rolls are

subject to a new instability named focus when the advection by the mean flow, generated

by a target asymmetry, dominates over roll diffusion. This instability generates a temporal

dependence with a low number of degrees of freedom inside the Busse balloon.

(iv) When the selected wavenumber kB is outside the Busse balloon : defects are

continuously created ; dynamics with a large number of degrees of freedom.



• Exact stationary solutions (P = ∞) :

¦ The system ∇ · kB(k) = 0, ∇× k = 0, k = (f, g)
is identical to that of the two-dimensional gas flow for k < kB with the essential
difference that

? k is a director
? B(k) changes sign .

Shocks correspond to phase grain boundaries

Jump conditions :

{
s[f ] + [g] = 0
[fB]− s[gB] = 0

where s = dx
dy gives the direction of the shock line. If k is continuous across the

shock, k = kB and the shock line separates the two patches at equal angles.



¦ Hodograph transform :

Consider the map X → k = (f = k cos φ, g = k sin φ). Its jacobian is J = fXgY −
fY gX and its winding number is the topological invariant called twist T = 1

2

∫
C

dφ (with

integration on the double cover where k is a vector field), also equal to T = 1
2

∫
Ω

JdXdY .

Introduce θ̂, Legendre transform of θ s.t. θ(X, Y ) + θ̂(f, g) = k · X.

We have k ∂
∂k(kB ∂θ̂

∂k) + ∂
∂k(kB)∂2θ̂

∂φ2 = 0

This is a linear separable equation with a few exact solutions

• Target : θ̂ = c
∫ k dk

kB ; T = 2π

kB = c
r with c = O(ε), the core size.



• Convex disclination : θ̂ = (ck
∫ k dk

k3B
) cos φ ; T = π

θ = c
kB cos φ with c = O(ε) ; there exists a core region.

a) b) c)

,

Figure 8: Right: from E. Bodenschatz



• Concave disclination : θ̂ = F (k) cos 3φ ; T = −π

F (k) ' ln(k2
B − k2) ; there are multivalued regions.

a) b)

c) d)

,

Figure 9: Right: from J. Liu and G. Ahlers, Phys. Rev. Lett. 77, 3126 (1996).

Note : all these solutions not only capture the correct topology but also the
correct energetics of defects, unlike harmonic solutions.

→ Need a regularization to put shocks and resolve the core region of convex
disclinations.



• Regularization (Stationary case) :

Going to the next orders in the expansion leading to the PDE, one can
identify the most important contribution, namely a term proportional to the
biLaplacian of the phase.

τ(k)ΘT +∇ · ~kB(k) + ε2∇4Θ = 0

This equation provides a good model, also introduced in the context of thin film blistering (Ortiz & Gioia, J.

Mech. Phys. Solids, 42, 531, 1994).

It rewrites τ(k)ΘT = −δF/δθ with

F =
∫

(
1
2
(ε∇2θ)2︸ ︷︷ ︸ +

1
2
G2)

︸ ︷︷ ︸
dxdy and G2 = −

∫ k2

k2
B

Bdk2

↓ ↓
roll bending wavenumber mismatch

The bi-Laplacian of the phase, ε2∇4Θ, provides the necessary bending resistance to arrest and saturate the roll

bending due to the zig-zag instability and leads to a stationary line defect which is called a phase grain boundary.



III. Analytical Results

For k close to kB, G2 is approximated to second order by (k2− k2
B)2. Choosing kB = 1,

the RCN (regularized Cross Newell) free energy divided by ε becomes

Eε[Θ] =
∫

Ω

(
ε(∇ · ~k)2 +

1
ε
(k2 − 1)2

)
d ~X. (1)

Question:

Asymptotic behavior as ε → 0 of the minimizers Θε of Eε[Θ] within the class

Aε
=

{
Θ ∈ H

2
(Ω); Θ|Ω = α

ε
(s),

∂Θ

∂n
|Ω = β

ε
(s)

}
(2)

The energy has the form of the Ginzburg-Landau functional except that the vector fields are

gradients.



Theorem 1. 1. As ε → 0, the minimizers Θε → Θ0 in H1(Ω) where Θ0 solves the eikonal

equation |∇Θ0| = 1. Defects are, therefore, supported on locally 1-dimensional sets which

are a union of locally rectifiable curves. Let Σ denote this total defect locus.

2. The asymptotic minimal energy is bounded:

lim inf
ε→0

E(Θ
ε
) ≤ 1/3

∫

Σ

|[∇Θ
0
]|3ds

where [∇Θ0] is the jump in ~k0 across Σ and ds is the element of arclength.

3. In the class of cases when Σ is a single straight line segment, the previous inequality

becomes an equality; i.e., the upper bound is tight.

Remark:
These one dimensional defect loci are phase grain boundaries. The bending
term

∫
Ω
|∇~k|2 in this free energy will diverge as 1�ε. This is a major increase

in energetic cost compared to the log(1/ε) cost of the original Ginzburg-Landau
problem whose defects are point vortices.



Hints of a demonstration:

• Analytical difficulties of RCN: 4th order equation and thus it is difficult to calculate the

minimizers.

Good approximate minimizers can be found by solving the self-dual problem

ε∇2Θ = ±
√

G2

for which the free energy is equipartitioned between the wavenumber mismatch and the bending

energy components.

The self-dual solutions are exact solutions provided the Hessian (proportional
to the Gaussian curvature of the graph of Θ) vanishes; i.e.,

ΘXX ΘY Y −Θ2
XY = 0.



In the weak bending limit this equipartition is true in general; i.e., solutions of the associated

self-dual equations were also solutions of the fourth order variational equations.

In the general case, these solutions nevertheless provide a good class of test functions for

deriving uniform bounds on wavenumber fluctuations and curvature.

The class of admissible functions Θ must now satisfy satisfy boundary conditions Θ|∂Ω = α(s), independent

of ε, and βε(s) = ∂νΘε
SD|∂Ω where Θε

SD is the solution of the self-dual equation corresponding to the boundary

values α(s).

Moreover, it is easy to calculate their limit as ε → 0. In the ε → 0 limit, the curvature

of ΘSD concentrates in points.

The transformation

Θ = ε ln Ψ

linearizes the self-dual equation as the Helmholtz equation

ε
2∇2

Ψ−Ψ = 0.



Example of the “Knee” solution :
The straight roll solution is

Ψ = e
~k· ~X�ε

, k = 1

The regularized phase grain boundary (PGB) solution is simply the sum of two exponentials

Ψ = e
~k+· ~X�ε

+ e
~k−· ~X�ε

where ~k± = (cos ϕ, ± sin ϕ). That corresponds to a phase

Θ = k0X + ε ln 2 cosh
(√

1− k2
0Y/ε

)
.

This PGB is also solution to the Cross-Newell equation since its Gaussian curvature is zero.

The energy of the PGB obeys limε→0 Eε = 8L
3 sin3 ϕ. This coincides with the general result stated in the

Theorem.



Theorem 2. Suppose vε solves ε(∆vε) + (1 − |∇vε|2) = 0 on Ω with vε = θ on the

boundary of Ω where |θ(x) − θ(y)| ≤ a dist(x, y) with a < 1. Then as ε → 0, vε

converges uniformly on the closure of Ω to the unique viscosity solution of |∇v|2 − 1 = 0 on

Ω with v = θ on Ω.

Prescription:

k = ∇v( ~X) = −
~X − ~X(s̄)

| ~X − ~X(s̄)|
,

where (
~X − ~X(s̄)

| ~X − ~X(s̄)|
− ∇v( ~X(s̄))

)
· ~X

′
(s̄) = 0.

This result is due to Ercolani and Taylor (Physica D, in press) who have
generalized the type of possible boundary conditions.



Figure 10: Eikonal solution with non-constant boundary conditions, and horizontal defect locus



Corollary 3. There is a constant C, independent of ε, such that for domains
Ω with generic defect locus Γ,

∫

Ω

|∇k|2dx ≤ C/ε (3)

∫

Ω

(1− k2)2dx ≤ Cε. (4)

From (4) we may conclude that |∇Θε|2 → 1 in L2(Ω). It follows that there is
a subsequence Θεj ⇀ Θ̄ in H1(Ω). This sequence converges strongly to Θ̄ in
L2(Ω).

Recent results (Ambrosio, DeLellis, Mantegazza, DeSimone, Kohn, Mller, Otto)
allow to prove strong convergence in H1(Ω).



IV. Presence of twist

The wavevector is a director field:

To include such double-valued fields one can consider single-valued vector
fields on Riemann surfaces:



a) b)

a) Convex disclination b) Concave disclination numerically calculated as solutions of the RCN equation.

The previous theorem involves minimization over vector fields. What
happens with director field perturbations?

In particular the energy cost associated with the sign reversal of k should
be discounted.

Consider a test case: the ellipse container.



The weak solution is

It is used as initial condition in a Swift-Hohenberg code



In the central regions of the PGB where the rolls bend sharply the computed
solution shows a string of dislocations which can also be viewed as convex and
concave disclinations pairs.



Figure 11: Rolls from numerical simulation of Swift-Hohenberg with an ellipse whose major axis is 4

times longer than its minor axis.

Their spacing gets closer further out and are then replaced by the eikonal PGB.



8
3 sin3 α 8

3(1− sin α)

Energy cost per unit length of grain boundary

The eneregy of the circular part of the convex disclination, proportional to ε ln 1
ε is negligible.

The convex-concave disclination pair is energetically preferred when α > 43o.



0.15π 0.20π 0.25π 0.30π 0.35π 0.40π 0.45π 

Experiment with Swift-Hohenberg:

The first protuberance indeed appears close to the critical angle (φ ≈ 43o).



Triangle: curvature center Diamond: critical transition



Figure 12: Local wavenumber magnitude. Lighter grays correspond to higher values of k. The contours

shown are k = .995, k = 1 and k = 1.005.



Energy density (smoothed to remove features at the roll wavelength).
Tightly spaced dislocations reproduce weak roll bending, while widely spaced ones replace sharply bent rolls.



Comparison with Experiments

a) 

b) 

Figure 13: a) Image of convection rolls from an experiment with ethanol at a Prandtl number of 14.7

(courtesy of Meevasana and Ahlers) b) Numerical simulation of Swift-Hohenberg with similar geometry



In addition, it is found in the experiments that the size of the inner straight roll decreases as the stress

parameter is increased. This particular result is not found with the SH equation. This behavior is likely to be

related to the decrease of the selected wavenumber in Oberbeck-Boussinesq as the Rayleigh number increases.

a) b) 

Figure 14: Result of integrating Swift-Hohenberg using kB = 1. This was used as the initial condition

for b) which was Swift-Hohenberg for kB = 0.95



Comparison with other simulations

Swift-Hohenberg simulation Boussinesq simulation

(courtesy of Mark Paul)



There is an explicit formula for a string of dislocations whose character is
quite similar to the dislocations seen in the numerical experiments. For example,
a string of dislocations located along the x-axis, at positions ±xn is

θ = y − sign(y)ε log

(
1 +

N∑
n=1

(
enπ − e(n+1)π

2

)
erf

(
x− xn√

2ε|y|

)
(5)

−
N∑

n=1

(
enπ − e(n+1)π

2

)
erf

(
x + xn√

2ε|y|

))
.

This is an exact solution of the phase equation with a “weak bending”
assumption. In fact, if a multi-dislocation with the same spacing as that seen
in the numerical solution is patched to the outer portion of the eikonal solution,
this initial condition settles to a solution of the same form with the position of
the dislocations essentially unchanged. (The only real changes are along the
interface where the solutions are patched together.)



V. Conclusion

• Variational model for patterns far from threshold based on a regularized
Cross-Newell phase-diffusion equation.

• Variations must be made over a class of vector fields which are only
constrained to be locally gradient.

• The energy should be modified to discount the bending energy cost
associated with sign reversal of the local wavevector.

Major difficulty: minimization must be made on the vector field as well as
on the geometry (type and location of defects).


