The Response Dynamics of Neural Oscillator Populations

Jeff Moehlis

Department of Mechanical and Environmental Engineering

University of California, Santa Barbara

moehlis@engineering.ucsb.edu

 $http://www.me.ucsb.edu/\sim moehlis$

Outline

- I. The Locus Coeruleus (LC) and a Visual Discrimination Task
- II. Mathematical Models for Neurons, including Phase Reduction
- III. Predictions for Peri-Stimulus Time Histograms (PSTHs) for Individual Neurons
- IV. Extension to Coupled Neurons
- V. Conclusions and Work in Progress

Outline

- I. The Locus Coeruleus (LC) and a Visual Discrimination Task
- II. Mathematical Models for Neurons, including Phase Reduction
- III. Predictions for Peri-Stimulus Time Histograms (PSTHs) for Individual Neurons
- IV. Extension to Coupled Neurons
- V. Conclusions and Work in Progress

pattern \sim synchronous firing of neurons

nice PDE application

The Locus Coeruleus (LC)

from Neuroscience: Exploring the Brain by M.F. Bear, B.W. Connors, and M.A. Paradiso, 2001

The Locus Coeruleus (LC)

- The LC is a nucleus in the brain consisting of approximately 15,000 neurons for monkeys (one nucleus in each hemisphere)
- Each LC neuron can make more than 250,000 synapses
- LC neurons release the neurotransmitter norepinephrine, which regulates arousal, sleep-wake cycles, memory, learning, stress, ...

A Visual Discrimination Task

Aston-Jones et al, J. Neuroscience 14:4467, 1994

Monkey presented with a sequence of visual stimuli:

Monkey trained to respond to target stimuli by releasing a lever, measure response of LC neurons

- correct response: gets juice
- incorrect response: time out period

A Visual Discrimination Task

Peri-Stimulus Time Histograms (PSTHs) for an LC neuron, from Usher et al, Science 283:549, 1999

Phasic State

- good performance
- slower (2 spikes/second)
- larger response to stimulus
- more synchrony

Tonic State

- poor performance
- faster (3 spikes/second)
- smaller response to stimulus
- less synchrony

Neural Modeling: Phase Reduction

Hodgkin-Huxley model

Neural Modeling: Phase Reduction

Phase Response Curves (PRCs)

$$Z_V(\theta) = \frac{\partial \theta}{\partial V} = \lim_{\Delta V \to 0} \frac{\Delta \theta}{\Delta V}$$

captures effect of impulsive perturbations in the voltage

Phase Response Curves (PRCs)

other types of neurons have different PRCs

Hindmarsh-Rose:

$$Z_V(\theta) = \frac{c}{\omega}(1 - \cos\theta)$$

- Form of PRC can be understood in terms of what bifurcation gives rise to periodic firing
 - E. Brown, JM, and P. Holmes, to appear Neural Computation

Show movies!

Predictions for PSTHs

$$\frac{d\theta}{dt} = \omega + Z_V(\theta)I(t) \equiv v(\theta, t)$$

 $\rho(\theta,t)d\theta \equiv \text{prob. neuron has phase in } [\theta,\theta+d\theta) \text{ at time } t$

$$v(\theta,t)\rho(\theta,t) \qquad v(\theta+d\theta,t)\rho(\theta+d\theta,t)$$

$$\theta \qquad \theta+d\theta \qquad \theta$$

$$\frac{\partial}{\partial t}[\rho(\theta,t)d\theta] \qquad = \underbrace{v(\theta,t)\rho(\theta,t)}_{\text{flux in}} - \underbrace{v(\theta+d\theta,t)\rho(\theta+d\theta,t)}_{\text{flux out}}$$
rate of change of probability

$$\Rightarrow \frac{\partial \rho}{\partial t} = -\frac{\partial}{\partial \theta} [v\rho] = -\frac{\partial}{\partial \theta} [(\omega + Z_V(\theta)I(t))\rho]$$

Predictions for PSTHs

ICS: stimuli come at random times

$$\Rightarrow \rho(\theta,0) = \frac{1}{2\pi}$$

Note:
$$FL(t) \equiv v(0, t)\rho(0, t)$$

= flux at spike point $\theta = \theta_s = 0$
= probability/unit time that neuron fires

FL(t) gives prediction for suitably normalized PSTH

Can solve for $\rho(\theta, t)$ using method of characteristics.

exact formulas

detailed understanding

While stimulus is on, $\rho(\theta, t)$ is periodic with period $P = \int_0^{2\pi} \frac{d\theta}{\omega + \overline{I}Z_V(\theta)}$

For $t > t_2$, $\rho(\theta, t)$ is traveling wave rotating with frequency ω , determined by $\rho(\theta, t_2)$

The response is larger for neurons with lower baseline firing frequencies.

The response is larger for neurons with lower baseline firing frequencies.

Can show that
$$FL_{peak} - FL_{base} \sim \frac{1}{\omega}$$

Suppose that in addition to the "deterministic" I(t), the input current also contains a noisy component:

$$I(t) + \sigma \eta(t)$$

where $\eta(t)$ is a real Gaussian white noise random process with

$$\langle \eta(t) \rangle = 0, \qquad \langle \eta(t) \eta(t') \rangle = \delta(t - t').$$

Here σ represents the r.m.s. noise strength.

We then obtain the following stochastic differential equation:

$$\frac{d\theta}{dt} = \underbrace{\omega + Z_V(\theta)I(t)}_{v(\theta,t)} + \sigma Z_V(\theta)\eta(t)$$

In the probabilistic formulation, we obtain the Fokker-Planck equation

$$\frac{\partial \rho(\theta,t)}{\partial t} = -\frac{\partial}{\partial \theta} [v(\theta,t)\rho(\theta,t)] + \frac{\sigma^2}{2} \frac{\partial^2 [Z_V^2(\theta)\rho(\theta,t)]}{\partial \theta^2}$$

This PDE is solved numerically using the Crank-Nicholson method.

Noise leads to a decay in the ringing in the PSTHs.

Larger σ gives quicker decay in the ringing.

Larger σ gives quicker decay in the ringing.

Note: Can show that

Flux Envelope
$$\sim \exp\left(-\frac{\sigma^2 \hat{Z_V}^2(t-t_2)}{2}\right), \qquad t > t_2$$

$$\hat{Z_V} = \frac{1}{2\pi} \int_0^{2\pi} [Z_V(\theta)]^2 d\theta$$

Noise and Freq Dist Important

Noise: $\sigma = 0.45$

Frequency Distribution:

phasic

 $2 \pm 0.3 \; \text{Hz}$

tonic

 $3 \pm 0.45 \; \text{Hz}$

Weak Coupling Captures...

...Cross Correlograms

Weak Coupling Captures...

...and Response to Stimuli

Conclusions

- I. The LC and a Visual Discrimination Task
- II. Model LC neurons as Hindmarsh-Rose neurons, reduce to phase model in presence of external stimulus
- III. Predictions for PSTHs: Fokker-Planck Equation
 - lower baseline activity \Rightarrow larger response
 - noise \Rightarrow decay of ringing
- IV. To explain experimental results: noise, frequency distribution, weak coupling
- V. Other Applications
 - matching experimental data for Eriksen task
 - similar analysis for other neuron types

Collaborators

- Eric Brown, graduate student, Princeton University
- Phil Holmes, professor, Princeton University
- Ed Clayton, postdoc, University of Pennsylvania
- Janusz Rajkowski, staff scientist, University of Pennsylvania
- Gary Aston-Jones, professor, University of Pennsylvania
- Jonathan Cohen, professor, Princeton University
- E. Brown, JM, and P. Holmes, to appear Neural Computation.
- E. Brown, JM, P. Holmes, E. Clayton, J. Rajkowski, G. Aston-Jones, submitted to Journal of Computational Neuroscience

http://www.me.ucsb.edu/~moehlis

Similar Analysis for Other Neuron Types

```
    SNIPER bifurcation (HR)
    saddle-node bifurcation of periodic orbits (HH)
    supercritical Hopf bifurcation (FN)
    homoclinic bifurcation (ML)
```

• integrate-and-fire neurons

```
\begin{array}{c} \text{different bifurcation} \, \to \, \text{different PRC} \\ \, \to \, \text{different response} \end{array}
```

Eriksen Task

<u>Stimulus</u>	Response
>>>>	R
<<<<	${ m L}$
>><>>	${ m L}$
<<>><	R

