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pattern ~ synchronous firing of neurons

nice PDE application



The Locus Coeruleus (LC)
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The Locus Coeruleus (LC)

e The LC is a nucleus in the brain consisting of
approximately 15,000 neurons for monkeys (one
nucleus in each hemisphere)

e Fach LC neuron can make more than 250,000
synapses

e LLC neurons release the neurotransmitter
norepinephrine, which regulates arousal, sleep-wake
cycles, memory, learning, stress, ...



A Visual Discrimination Task

Aston-Jones et al, J. Neuroscience 14:4467, 1994

Monkey presented with a sequence of visual stimuli:

target stimulus non-target stimulus

20% of all stimuli 80% of all stimuli

Monkey trained to respond to target stimuli by
releasing a lever, measure response of LC neurons

e correct response: gets juice
e incorrect response: time out period



A Visual Discrimination Task
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Peri-Stimulus Time Histograms (PSTHs) for an LC
neuron, from Usher et al, Science 283:549, 1999

Phasic State
e good performance
e slower (2 spikes/second)
e larger response to stimulus
e more synchrony

Tonic State
e poor performance
e faster (3 spikes/second)
e smaller response to stimulus
e less synchrony



Neural Modeling: Phase Reduction
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Neural Modeling: Phase Reduction
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Phase Response Curves (PRCs)
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Phase Response Curves (PRCs)
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e Form of PRC can be understood in terms of what
bifurcation gives rise to periodic firing

E. Brown, JM, and P. Holmes, to appear Neural Computation

Show movies!
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Predictions for PSTHs

do
W Zy(0)1(t) = v(0,1)

p(0,t)df = prob. neuron has phase in |0, 0+df) at time ¢
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0 0 + do 7
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Predictions for PSTHs

ICS: stimuli come at random times

= p(0,0) =

7T

Note : FL(t) = v(0,1)p(0,t)
= flux at spike point 6 = 6, = 0

= probability /unit time that neuron fires

FL(t) gives prediction for
suitably normalized PSTH

13



Solution for Step Function Stimulus

Can solve for p(f,t) using method of characteristics.

exact formulas — detailed understanding
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Solution for Step Function Stimulus

While stimulus is on, ,0(9 t) IS periodic
with period P = fo wHZV
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Solution for Step Function Stimulus

For t > t9, p(0,t) is traveling wave rotating with
frequency w, determined by p(0,t5)
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Solution for Step Function Stimulus

The response is larger for neurons with lower

I(t)

baseline firing frequencies.
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Solution for Step Function Stimulus

The response is larger for neurons with lower
baseline firing frequencies.

Can show that F L, — FLpgse ~

1
w
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Effect of Noisy Current

Suppose that in addition to the “deterministic” (%),
the input current also contains a noisy component:
I(t) +on(t)

where 7(t) is a real Gaussian white noise random
process with

(n(t)) =0, (n(t)n(t)) = o(t —t').

Here o represents the r.m.s. noise strength.
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Effect of Noisy Current

We then obtain the following stochastic differential
equation:

W — w+ Zy(0)I(t)+0 Zv(0)n(t)
v(0,t)

In the probabilistic formulation, we obtain the
Fokker-Planck equation

o? [ Z5(0)p(0,0)
2 0P

apéi,t) _ —%[U(Q, t)p(@, t)] |

This PDE is solved numerically using the
Crank-Nicholson method.
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Effect of Noisy Current

Noise leads to a decay in the ringing in the PSTHs.
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Effect of Noisy Current

Larger o gives quicker decay in the ringing.
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Effect of Noisy Current

Larger o gives quicker decay in the ringing.

Note: Can show that

027y (t—to)
Flux Envelope ~ exp | ——=— |, t >t

) 1 27

Zr=5-| Zv(0))%d0
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Noise

and Freq Dist Important
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Weak Coupling Captures...

...Cross Correlograms
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Weak Coupling Captures...

...and Response to Stimuli
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Conclusions

I. The LC and a Visual Discrimination Task

II. Model LC neurons as Hindmarsh-Rose neurons,
reduce to phase model in presence of external
stimulus

II1. Predictions for PSTHs: Fokker-Planck Equation

e lower baseline activity = larger response

® noise = decay of ringing

IV. To explain experimental results: noise, frequency
distribution, weak coupling

V. Other Applications
e matching experimental data for Eriksen task

e similar analysis for other neuron types
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Similar Analysis for Other Neuron Types

e SNIPER bifurcation

e saddle-node bifurcation of periodic orbits
e supercritical Hopf bifurcation

e homoclinic bifurcation

e integrate-and-fire neurons

different bifurcation — different PRC
— different response

(HR)
(HH)
(FIN)
(ML)
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Eriksen Task
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