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RENORMALIZATION AND SCALING IN PHYSICS

Renormalization Group (RG)

e Quantum field theory and statistical mechanics, in

particularly critical phenomena

e Wilson and Fisher (in early 70’s)

RG calculations are generally composed of two steps:

(1) Coarse graining

(2) Rescaling

RG methods have evolved into a broad philosophy rather

than a single technique as each new application often

involve different method and have been applied to

problems in Physics and Applied Mathematics.
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Fig. 1.6.2 Random walk with a drift term. (a) A small segment of the walk is shown
and should be compared with the pure random walk, Fig. 1.6.1a. (b) A larger scaie
view of the same walk shows one-dimensional behavior beginning to emerge. (c) At
even larger scales the random component of the walk is much less noticeable and its
ultimate one-dimensional nature emerges.



APPLICATION IN APPLIED MATHEMATICS

Creswick, Farach, Poole text. Applications include Cantor
sets ( and calculating fractal dimensions), random walk
(and central limit theorem), self-avoiding random walk,
period doubling and chaos.

RENORMALIZATION FOR DIFFERENTIAL EQUATIONS

Decay, finite time blow-up and extinction have
asymptotically self-similar characteristics and can
treated by RG methods.

ADVANTAGE: Analog of universality
distinguishing features of PDEs emerge.

Example : The Porous Medium Equation (Barenblatt).
Goldenfeld et al. considered

U — —%—uxx = —%H(—uxx)uxx

and found that the decay was non-classical (¢ —41 )



2. RENORMALIZATION AND SCALING IN INTERFACE
PROBLEMS

In many interface problems we need to know about the large
time behavior. Numerical computations and even experiments

have difficulty resolving the issues.

KEY QUESTIONS:

> Can we determine the characteristic length, R(#) ~ 7 ?

»  What parameters in the system are “relevant” ?

o Early work by Jasnow and Vinals indicates =1 in
quasi-static one sided (i.e. R(#) ~ ¢ ).

e Later work by Caginalp indicates f = % in fully dynamic

case (i.e. R(¢) ~ t12).

Merdan and Caginalp consider the two sided model in

quasi-static regime below:

AT =0 in Q (2.1)
v, = —K[VT e n]’ on I'(¢) (2.2)
T=-"929(x+av,) onI(2). (2.3)

T 1.



We. censider +wo Cases
(i) <o a (2.2)

(ﬂ.’z.) A = e (2.3)
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We can rewrite (2.1) and (2.2) in the Oleinik formulation,
- _L
AT = 5K @+ 2.4)

so that the latent heat is treated like a source term.

Use Green’s function (assume 2 is infinite or very large):

16) = | GG -3)( 5 $:G.0 )dy
+[ (16)9E G- +6G-HELG) )atty

(2.5)
where the Green’s function G 1s
1 2 22 .
GG-7) = d(2—d)codlx_y| ifd > 2.
3 loglt -y ifd =2
(2.6)

Smoothing ¢, using % as the distance of point on interface in

section, and 7 the distance in the normal direction, we write

¢t(},t) = (I),(r— Unt)



Substituting into the Green’s function equation, we have
=) _ d - _l__ .
7(*) IQdyG(x 5/’)( 2K)

(~(k- ﬁ%)%(r— (ke i i )))+BI

(2.8)

The derivatives of ® vanish just outside of the interfacial
region, we can perform integral in the normal direction reducing

the integral over Q to one over I', with the result,

7(%) = [ d+10,GF-7)( 5k ) « (-2k+ a4t ) +BI

2.9)

I'@)

For points (x,¢) on the interface, one has (with neglecting BI):

[;C]’Oq (c(Z1) +ava(3,0)) = | d*10,GF -H)( L Jo. (3.1

.10

I(t)

00/[S]eq
Ic

do(k(%,1) +avu(%,0)) = & [ GG -Pwa(F,1)d*o,.

r'(?)
(2.11)

Letting D := < and dy :=

, we rewrite (2.10) as

We need now to convert to dimensionless counterparts in

order to compare pure numbers.



THE RG PROCEDURE

Stage 1. For any b > 0 and any real A, make the
algebraic substitutions in (2.11)

bX for ¥ and b*t for t.
(2.12)

Next define new variables
7' =7/, o, = 0,/b. (2.13)
These two substitutions yield:

do{x(bX,b71) + a v, (b¥, b*1) )
_ 1 d-1d-1~ (BT — b Yo (b h—r
_ Djrb d+16,G(bT — bY You(bY b7
(2.14)

Stage 2. Examine scaling of individual terms. We

have the purely algebraic transformation for the Green’s

function (ford > 2):

G -by) = b>4GE-F). (2.15)



Basic physical assumption of Single Scale Self

Similarity:
All physical lengths in the problem scale as
E(bX,b7*) = bE(R, 1) (2.16)
while all time mesaurements scale as
T(bX,b7*t) = b~*T(X,1) (2.17)

so that velocity scales as

oa(B,b) = diii‘;?e (bR, b 1)

b ¢ distance ,—
= t 2.18
b~* e time (x.0)  (218)

= bl+xvn (_x-), t)

and curvature scales as

bic(b%,b) = k(2. 1). (2.19)



Stage 3. Use relation above to rewrite the equation
(2.14) as:

o {x@0+ %5 va@0)}

= L[ 10,6 -5 waG0)
(2.20)

The key observation is that this new equation (2.20) is

identical to the original, (2.11),upon replacing:

do .
do — e a - b‘g"l : (2.21)
Hence, one has (with R as the characteristic length):

OLD NEW

do do/b>+

a a/b=>*

&(bx,b™*1) b&(x,1)

R(b~*t,a,dy) bR(t,a/b=27*,do/b>*)

By a simple substitution #; = b~*¢, we write

R(t1;a,do) = bR(bltl;a/b‘2“’1,do/b3+'1).
(2.22)



Stage 4. Choose b = t]“ * (and omit subscript 1)
yielding,

R(t;,a,do) = tVAR(1;a/t® WA do/t=C+DAy,
(2.23)

Analysis of A :
» If A<-3 or 1 >0, then dop > © as ¢t -

(Physically irrelevant)
» If 2<A<0, thendy—- 0, but @ > o0 as ¢t - o

(Nonphysical)

Nontrivial fixed points
R( t) ~ t_l/ A )

A e [-3,-2] >

B THECASEa=0:

Nontrivial fixed points
R(t) ~ t7V |

A e [-3,0) =

» A = -1 is selected from this continuous spectrum by

the plane wave imposed by Jasnow and Vinals.



R(ta,d,)=t"".

=(2+4) (3+4)

R(;t * a,t * d,)

N - NL;
he[-3-2]

R(t;d)=1t"".
(3+4)

R(l;t * d,)

k - NL;(
2 e[-30)

a#0
NPW
AT =0 in Q
Iv, =-K[VT.i] on Q
T uuww?gs_ on T NPW
a=0
PW
J&V
1989 & 90

NPW : Thereis not a plane wave imposed

PW: Thereis a plane wave imposed.

Ritd,) ="

-(1+4) (3+4)

Rt * it * dy)

R~t

one sided

R~t
two sided




,_Enb,a,mov =t

NPW
W)
a0 R(;t* Dt * a,t'd,)
Caginalp
99 & 01 wAnw va“ &ov - Nu_;.
QH = KAT in Q PW wﬁumpbkuwéakw&ov
lo,=-K[VTa]  on Q
T n!wl_x._,nc,__ on T . _ 1A
[sly NPW Rt;D,d,)=t"".
R(;t* D,t*d,)
a=0
R(t;D,d)=t"".
PW | R(;¢ 7 D,tid,)

NPW : Thereis not a plane wave imposed
PW:

There is a plane wave imposed.




CONCLUSIONS

e  Characteristic length evolves as R(¢) ~ ¢
where (i) p € [1/3,1/2] when a # 0,
(@) B € [1/3,0) when a = 0

e In almost all these casess, capillarity length, do, 1s
essentially irrelevant for large time-sharp contrast with its

stabilizing role in short times.

CHALLENGES AHEAD

» Understanding the transition from the exponent of
the characteristic length for the quasi-static model to that
for the fully dynamic set of equations ( through RG)

» Understanding the important connection between the

dynamic and static renormalization methods

» Understanding the transition between short time
(linear stability) and the long term asymptotics (through

RG). Crossover behavior



