Territorial Pattern Formation Through Scent Marking

Mark Lewis, University of Alberta Paul Moorcroft, Harvard University Social carnivores, such as wolves and coyotes, have distinct and well-defined home ranges.

Van Ballenberghe (1978)

Scent marks provide important cues regarding the use of space by familiar and foreign packs.

Territorial Interactions

- Individuals forage by moving around their territory while searching for prey
- Scent-marking occurs throughout the territory
- "Bowl"-shaped pattern of scent marks
- Existing scent-marks (both foreign and familiar) elicit increased marking rates
- Movement patterns change in response to scent-marks
- In some wolf populations there are observed "buffer zones" between territories which are infrequently visited

Coyote locations from Hanford Arid Lands Ecosystem

Coyote locations from Lamar valley, Yellowstone

Terrain

Hanford Arid Lands Ecosystem

Lamar Valley, Yellowstone

Fitting probability density functions: Bivariate Gaussian

Objective

Formulate a mechanistic model for territorial pattern formation and maintenance based on behaviour rules for individuals, and test this model against radio-tracking data.

Outline

- Model with no den site
 - u Formulation from random walk
 - u Analysis and 'energy method'
 - u Patterns
 - u Conclusions
- Models based on den site
 - u Territorial interactions
 - Evolutionarily stable strategies
 - u Complex scent marking
 - u Fit to radiotracking data
 - o Other territorial patterns
 - u Conclusions
- Discussion

Home Range Model With No Den Site

- Well-defined wolf home-ranges can form in the absence of a den site (Rothman and Mech, 1979), and even in the absence of surrounding packs (Mech, 1991)
- Can we propose a mechanistic model involving interaction between scent-marking and movement behaviour that yield home range pattern formation?
- Model assumes (1) positive feedback in scent-marking dynamics (2) movement rate is a decreasing function of local scent-mark density

Briscoe, Lewis and Parrish (2001)

Model With No Den Site

$$R(x,t) = L(x,t) = (1-N(x,t))/2$$

Animal movement modelled by random walk on a lattice

Take "diffusion"
limit as space and
time steps approach
zero

Formulation From Random Walk

Forward Kolmogorov equation

Motility

$$\frac{\partial u}{\partial t} = \frac{\partial^2}{\partial x^2} [D(x, t)u(x, t)]$$

$$D(x,t) = D_0(1-N(x,t))$$

Individuals remain at areas with high scent levels

Thus motility decreases with local scent levels

$$N(x,t) = \frac{p(x,t)}{\alpha + p(x,t)}$$

$$D(x,t) = \frac{D_0}{1 + p(x,t)/\alpha}$$

Model with scent marking

Movement equation

Scent-marking equation with feedback

Zero flux boundary conditions

Local averaging of scent mark in positive feedback response m

$$\frac{\partial u}{\partial t} = \frac{\partial^2}{\partial x^2} \left(\frac{u}{1+p} \right)$$

$$\varepsilon \frac{\partial p}{\partial t} = u(l + m(\overline{p})) - fp$$

$$0 = \frac{\partial}{\partial x} \left(\frac{u}{1+p} \right) \quad \text{at} \quad x = 0,1$$

$$\overline{p}(x,t) = p(x,t) + \frac{\sigma^2}{2} \frac{\partial^2}{\partial x^2} p(x,t)$$

As ε, σ approach zero Turchin's (1989) aggregation model is regained

Numerical Solution – Home Range Patterns

Steady State Analysis

Scent-marking $u(1+m(p))-\phi p = 0 \rightarrow p = f(u)$ equation

f(u) p is scentmark level

Movement equation

$$\frac{\partial^2}{\partial x^2} \left(\frac{u}{1 + f(u)} \right) = 0 \rightarrow \frac{u}{1 + f(u)} = \text{const}$$

u is density

Linear analysis about the homogeneous solution $(u_2^*, f(u_2^*))$ yields a dispersion relation between the wave number k and the growth rate s

Equal Area Rule

- Energy methods can be used to prove that, as ϵ , σ –>0, densities approach piecewise constant values asymptotically in time.
- The lowest energy solution is associated with piecewise constant solutions with values u₁* and u₃*.
- Transition layers joining u_1^* and u_3^* are of order σ .

Similar to "Maxwell condition" for phase-transition models

Energy method
$$\frac{\partial u}{\partial t} = \frac{\partial^2}{\partial x^2} \left(\frac{u}{1+p} \right)$$
 $\varepsilon \frac{\partial p}{\partial t} = u(l+m(\overline{p})) - \phi p$

$$0 = \frac{\partial}{\partial x} \left(\frac{u}{1+p} \right) \text{ at } x = 0,1$$

Consider case with no local averaging $(\sigma = 0)$, so $\overline{p} = p$. As $\varepsilon \to 0$ we have a quasi-steady state for the scent marking equation (p = f(u)) and

$$\frac{\partial u}{\partial t} = \frac{\partial^2}{\partial x^2}(\psi(u)), \quad \psi(u) = \frac{u}{1 + f(u)}$$
Define $E(u) = \int_0^1 F(u(x,t)) dx$ where $F'(u) = \psi(u)$

$$\dot{E}(u) = \int_0^1 F'(u) \frac{\partial u}{\partial t}(x) dx = \int_0^1 F'(u) [\psi(u)]_{xx} dx$$

$$= -\int_0^1 \frac{\partial}{\partial x} (F'(u)) \frac{\partial}{\partial x} [\psi(u)] dx = -\int_0^1 \left(\frac{\partial}{\partial x} [\psi(u)]\right)^2 dx \le 0$$

E(u) is bounded below and decreasing until $\phi(u) = \lambda$ What λ gives the lowest energy solution?

Energy Method

$$E(u) = \sum_{i=1}^{N} L_i F(u_i)$$

$$\sum_{i=1}^{N} L_i = 1$$

$$U = \sum_{i=1}^{N} L_i u_i = U_0$$

$$E(u) = \sum_{i=1}^{N} L_i F(u_i)$$

$$\sum_{i=1}^{N} L_i = 1$$

$$U = \sum_{i=1}^{N} L_i u_i = U_0$$

$$E(u) = \sum_{i=1}^{N} L_i F(u_i)$$

$$\sum_{i=1}^{N} L_i = 1$$

$$U = \sum_{i=1}^{N} L_i u_i = U_0$$

$$E(u) = \sum_{i=1}^{N} L_i F(u_i)$$

$$\sum_{i=1}^{N} L_i = 1$$

$$U = \sum_{i=1}^{N} L_i u_i = U_0$$

$$E(u) = \sum_{i=1}^{N} L_i F(u_i)$$

$$\sum_{i=1}^{N} L_i = 1$$

$$U = \sum_{i=1}^{N} L_i u_i = U_0$$

 $\lambda = 0$ yields the lowest E_{\min} and a solution with proportion L_1 with value u_1^* and proportion $1 - L_1$ with value u_3^*

"Equal Area" Rule

Home Range

Conclusions

- A simple mechanistic model with (1) positive feedback in scent marking dynamics and (2) reduced movement rates near familiar scent marks gives rise to distinct home range patterns with a core area surrounded by a lower use area.
- Densities in the core and surrounding areas are predicted analytically using the "Equal area rule".
- The model does not predict some field observations (eg, "bowl-shaped" scent mark densities, buffer zones). These observations are for well established territories where (1) there is a den site (2) there are interactions between adjacent packs.

Model with den site and pack interactions

- Home range model (Holgate, 1971): individuals move via random motion plus a constant bias towards a den site.
- Territorial model (Lewis and Murray, 1993): individuals move via random motion while scent marking; foreign scent marks bias movement towards a den site.

Home range model

Territorial model

Radiotracking

Data from Dan Groebner (unpublished)

Lagrangian Simulation Model

- Model for individuals based on a modified random walk and observed movement distances
- Foreign scent-marks assumed to cause local increase in scent marking and movement towards den site

PDE Formulation

Movement

$$\frac{\partial u}{\partial t} = d_u \frac{\partial^2 u}{\partial x^2} + \frac{\partial}{\partial x} (c_u(q)u)$$
local density change random motion directed motion to denon left

 $\frac{\partial v}{\partial t} = d_v \frac{\partial^2 v}{\partial x^2} - \frac{\partial}{\partial x} (c_v(p)v)$ local density change random motion directed motion to den on right

Pack V density

Pack U

Pack U

density

Marking

$$\frac{\partial p}{\partial t} = \underbrace{lu}_{\text{decay}} - \underbrace{\phi p}_{\text{decay}}$$
local density change

$$\frac{\partial q}{\partial t} = \underbrace{lv}_{\text{decay deposition by V individuals}} - \underbrace{\phi q}_{\text{decay}}$$

Pack V

scent marks

scent marks

Formulation Continued

Zero-flux boundary conditions

$$d_u \frac{\partial u}{\partial x} + c_u(q)u = 0, \quad d_v \frac{\partial v}{\partial x} - c_v(p)v = 0 \quad \text{at} \quad x = 0, L$$

Pack size conserved

$$\int_{0}^{L} u(x,t) dx = U_{0}, \qquad \int_{0}^{L} v(x,t) dx = V_{0}$$

Movement response to foreign scent marks

$$c_{u}(q) = \gamma_{u1} + \gamma_{u2}q, \qquad c_{v}(p) = \gamma_{v1} + \gamma_{v2}p$$

Foreign Scent Mark Level

Steady-state Analysis

- Nondimensionalize
- Look for time-independent solutions which vary with space
- Solve scent marking equations for p(u,v) and q(u,v)
- Substitute p(u,v) and q(u,v) into timeindependent movement equations to get a system of coupled ODEs

Steady-state Analysis

Pack 1
$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial}{\partial x} \left((\gamma_{u1} + \gamma_{u2} q) u \right)$$

Pack 2 $\frac{\partial v}{\partial t} = \frac{\partial^2 v}{\partial x^2} - \frac{\partial}{\partial x} \left((\gamma_{v1} + \gamma_{v2} p) v \right)$

Pack 1 $\frac{\partial p}{\partial t} = u - p$

Pack 2 $\frac{\partial q}{\partial t} = v - q$

 γ_{*_1} : rate of intrinsic movement towards den site γ_{*_2} : rate of movement towards den site in response to foreign scent marks

rate at which pack 1 density drops off with distance from den

$$\frac{\partial v}{\partial x} = (\gamma_{u1} + \gamma_{u2}v)u$$
nonlinear function of pack 1 density and pack 2 density
$$\frac{\partial v}{\partial x} = (\gamma_{v1} + \gamma_{v2}u)v$$
rate at which pack 1 density drops off with distance from den

$$\int_{0}^{1} u(x)dx = 1, \quad \int_{0}^{1} v(x)dx = 1$$

distance between den sites is rescaled to equal 1; u and v can be interpreted as probability density

functions for wolf locations from packs 1 and 2

Territorial Interactions

Steady state analysis
$$\frac{\partial u}{\partial x} = -(\gamma_{u1} + \gamma_{u2}v)u$$

$$\frac{\partial v}{\partial x} = -(\gamma_{u1} + \gamma_{u2}v)u$$

$$\frac{\partial v}{\partial x} = (\gamma_{v1} + \gamma_{v2}u)v$$

Holgate home range model

Pure territorial model

Complex Scent Marking

$$\frac{\partial u}{\partial t} = d_u \frac{\partial^2 u}{\partial x^2} + \frac{\partial}{\partial x} c_u(q) u$$

$$\frac{\partial v}{\partial t} = d_v \frac{\partial^2 u}{\partial x^2} + \frac{\partial}{\partial x} c_v(p) v$$

$$\frac{\partial v}{\partial t} = u(t + m(q)) \quad \text{fo}$$

$$\frac{\partial p}{\partial t} = u(l + \underbrace{m(q)}_{\text{increased marking}}) - fp$$

$$\frac{\partial q}{\partial t} = u(l + \underbrace{m(p)}_{\text{increased marking}}) - fq$$

Positive feedback in scent-marking dynamics gives "bowl" shape scent-mark densities

Foreign Scent Mark Level

Complex Scent

Marking

Lewis, White and Murray (1997)

Fit to Radiotracking Data

Moorcroft, Lewis and Crabtree (1999)

Fitting probability density functions: Bivariate Gaussian

Fit to Radiotracking Data

Relationship to Random Walk Model

The nonlinear PDE model for densities can be related to a complex random walk model for individuals

Preferential movement direction

 $+\pi$

-π

Pack removal prediction

Model fit to Yellowstone Coyote locations

Model with added "terrain taxis"

Scent mark density prediction

Other Territorial Patterns

Badger territories near Oxford (based on Kruuk)

Conclusions and Discussion

- Simple mechanistic models based on movement about the den site can give rise to complex territorial patterns that fit observed data, including realistic bowl-shaped scentmarking densities.
- Models can be modified to include spatial heterogeneity, such as variable terrain and spatially distributed prey.
- Mechanistic models with no den site, but positive feedback on familiar scent-marks yield home ranges and can be analyzed mathematically with energy methods.
- Game theory also can be used in this spatial PDE context to analyze which territorial behaviour is an "Evolutionarily Stable Strategies."
- Current data projects include: collecting wolf movement data with GPS collars (every 15 minutes for 3 months) to estimate "random walk" parameters directly, and analyzing coupled scent mark/movement field data.

Territorial Interactions

Steady state analysis
$$\frac{\partial u}{\partial x} = -(\gamma_{u1} + \gamma_{u2}v)u$$

$$\frac{\partial v}{\partial x} = -(\gamma_{u1} + \gamma_{u2}v)u$$

$$\frac{\partial v}{\partial x} = (\gamma_{v1} + \gamma_{v2}u)v$$

Holgate home range model

Pure territorial model

Interactions With White-tailed Deer

- Strong predator-prey interaction
- Deer locations correlate negatively with wolf locations in radiotracking studies

Evolutionarily Stable Strategies

How should packs modify movement and scentmarking parameters so as to maximize fitness?

$$R_{u} = \underbrace{\exp\left(-\mu_{0} - \alpha \int_{0}^{1} u(x)v(x) dx\right)}_{\text{survivorship}} \underbrace{\sigma\psi\left(\int_{0}^{1} u(x)H(u(x),v(x)) dx\right)}_{\text{offspring produced}}$$

u: pack 1 density

v:pack 2 density

H(u,v): deer density averaged over year

 μ_0 : density - independent mortality

 α : interaction - dependent mortality

 $\sigma \psi$: translates food into offspring

ESS: movement rules for intrinsic bias (γ_{1*}) and response to foreign scent marks (γ_{2*}) that are uninvadable in that a pack digressing from these rules will reduce its "fitness" $(r_u = \log(R_u))$ or $r_v = \log(R_v)$).

Lewis and Moorcroft (2001)

ESS in Home-range Case

Contours indicate constant values of $r_u = log(R_u)$

$$\frac{\partial u}{\partial x} = -(\gamma_{u1} + \gamma_{u2}v)u$$

$$\frac{\partial v}{\partial x} = (\gamma_{v1} + \gamma_{v2}u)v$$

$$R_{u} = \underbrace{\exp\left(-\mu_{0} - \alpha \int_{0}^{1} u(x)v(x) dx\right)}_{\text{survivorship}} \underbrace{\sigma\psi\left(\int_{0}^{1} u(x)H(u(x),v(x)) dx\right)}_{\text{offspring produced}}$$

ESS for mixed model shows pure territorial behaviour with an interaction zone

o: ESS value for γ_1 , given fixed γ_2 values

x: ESS value for γ_1 , given fixed γ_2 values

Conclusions and Discussion

- Simple mechanistic models based on movement about the den site can give rise to complex territorial patterns that fit observed data, including realistic bowl-shaped scentmarking densities.
- Models can be modified to include spatial heterogeneity, such as variable terrain and spatially distributed prey.
- Mechanistic models with no den site, but positive feedback on familiar scent-marks yield home ranges and can be analyzed mathematically with energy methods.
- Game theory also can be used in this spatial PDE context to analyze which territorial behaviour is an "Evolutionarily Stable Strategies."
- Current data projects include: collecting wolf movement data with GPS collars (every 15 minutes for 3 months) to estimate "random walk" parameters directly, and analyzing coupled scent mark/movement field data.