Betting on Death and Capital Markets in Retirement:

A Shortfall Risk Analysis of Life Annuities versus Phased Withdrawal Plans

Ivica Dus, Raimond Maurer, Olivia S. Mitchell

IFID Conference April 28, 2004, Toronto

Three Uncertainties in Retirement: A Financial Perspective

Motivation

- Compared to accumulation phase:
 - Ø Uncertainty about capital markets
 - Ø Uncertainty about investment horizon
- Interest in alternative payout designs:
 - Ø Risk-return tradeoffs: Benefits, shortfalls, and bequests
 - Ø Incorporate asset allocation and withdrawal rules
- Importance:
 - Ø 1st pillar state pensions in decline, more DC plans
 - Ø Retirees responsible for decumulation phase
 - Ø Some countries (UK, Germany) require mandatory annuitization (75/85)

Phased Withdrawal Plans

- Retirement assets invested in <u>Individual Pension Account</u>
 Ø Asset Allocation ?
- Retiree consumes from the IPA periodically Ø Withdrawal Rule ?
- Advantages compared to Life Annuity
 - Ø High flexibility, liquidity
 - Ø Bequest potential
 - Ø Higher benefits
- Risks of Phased Withdrawal Plans
 - Ø Lower benefits than Life Annuity à
 - Ø Longevity risk (No risk pooling)
 - Ø Capital market risk

- à Consumption Shortfall
- à "Betting on Death"
- à "Betting on Capital Markets"

Phased Withdrawal Plans

Types of Withdrawal Plans

Fixed Withdrawals

- constant
- increasing
- decreasingAmount in EURO

Asset Allocation

- Stocks
- Bonds
- Cash
- Mixed

Variable Withdrawals

- constant
- increasing
- decreasing

Benefit-to-wealth ratio

Fixed Withdrawal Plan

Retiree has sum of money V_0

- invested in financial assets earning returns R_t .
- Each period, he consumes B equal to the life annuity as long as possible:

$$B_t = \min(B, V_t).$$

- Non-linear Intertemporal budget constraint:

$$V_{t+1} = (V_t - B_t)(1 + R_t) = \begin{cases} (V_t - B)(1 + R_t) & V_t > B \\ 0 & V_t \le B. \end{cases}$$

Ł Consumption risk = fund exhaustion while still alive

Variable Withdrawal Plans

•Plan pays an *ex ante* specified fraction ω_t of remaining retirement funds [e.g. 5%].

$$B_{t} = \omega_{t} \cdot V_{t}$$

•Linear Intertemporal budget constraint:

$$V_{t+1} = (V_t - B_t) \cdot (1 + R_t) = (1 - \omega_t) \cdot V_t \cdot (1 + R_t)$$

E Consumption risk = lower benefits than benchmark while still alive

Specific Variable Withdrawal Rules

"Fixed Percentage" withdrawal rule:

- Constant and fixed fraction $\omega = \omega_0 = \omega_1 = \dots \omega_t$.

"1/T Rule" withdrawal rule:

Withdrawal fraction set to maximum possible plan duration T

$$\omega_t = \frac{1}{T-t}$$
.

"1/E[*T(x)*]" withdrawal rule:

Withdrawal fraction determined by retiree's remaining life expectancy

$$\omega_t = \frac{1}{\mathrm{E}[T(x+t)]}.$$

The Benchmark Life Annuity

Characteristics

ØConstant (real) annuity payments until death

ØOffered by commercial insurance companies

ØPro: Pooling of longevity risk / mortality "spread"

ØCon: No bequest potential, low flexibility

Present Relevance

ØThin private annuity markets around the world

ØAlso countries with substantial DC-pension plans

Life Annuity Benefits: Using German / US data

Mortality Table	Male	Female		
Retirement Age	Life Annuity \$ (€) p.a.			
65	5.83 (5.82)	5.22 (5.02)		
70	7.00 (7.03)	6.22 (5.99)		

Parenthesis: Results for German Annuity

Immediate Annual Life-long Real Annuity Benefits per EUR 100 Single Premium: Total Expense Loadings 2.785% for Germany; 1% for US; (Real) Discount Factor **1.5%**; German DAV R 94 annuitant mortality table (max. age 110); US 2000 basic annuitant mortality table (max age 115)

Ø Mortality "drag" at the cost of no bequest potential

Historical Analysis: Retire in 1957 (German-Case)

Historical Analysis: Retire in 1957 (US- Case)

Historical Benefits of Withdrawal Plans Conditional on Survival (60% Equities / 40% Bonds): Life Annuity Benchmark

Research Approach

- Evaluate these different strategies against <u>life</u> annuity benchmark
- Stochastic Model (mortality / investments)
- Possible objective functions
 - ØRisk value models (Milevsky et al. 1994, 1998, 2000, 2001 Albrecht/Maurer 2002)
 - Only look at shortfall probability
 - Only examine withdrawal plans with fixed benefits
 - ØSpecific utility functions (Blake, Campbell/Viciera)
 - Must assume exact risk preferences, but...

Our Contributions

Ł Using risk value models:

- Ø Our risk measure incorporates both probability and size of loss
- Ø Compare fixed with different variable withdrawal rules
- Ø Optimize asset allocation
- Ø Optimize design parameters of variable payment schedule
- Ø Study portfolios of withdrawal plans and annuities

Shortfall Risk and "Return" Measures:

Risk

- Shortfall Probability $SP = P(B_t < z)$
- Mean Excess Loss $MEL = E(z - B_t | B_t < z)$
- Expected Shortfall

$$SE = E[max(z - B_t, 0)]$$

= SP * MEL

where

B_t = benefit of the withdrawal plan z = benefit of the benchmark life annuity

Return

- Expected Benefit
 E[B₊]
- Expected Bequest E[V₊]

Withdrawal plans: Risk-Minimizing Investment Allocation

Objective function:

$$EPVShortfall = \sum_{t=1}^{T} \frac{p_x E[\max(z - B_t, 0)]}{(1+r)^t}$$

- · This risk measure accounts for:
 - ü Mortality risk
 - ü Time preferences
 - ü Risk preferences for investment uncertainty
- Vary investment mix and withdrawal fraction to minimize Expected PV of Shortfall

Optimized Withdrawal Rules in Risk-Return Context

ü EPV_Benefits reflects expected present value of benefit payments conditional on survival:

$$EPVBenefits = \sum_{t=1}^{T} \frac{p_x E(B_t)}{(1+r)^t}$$

ü EPV_Bequest measures expected present value of inheritance the retiree passes to heirs in the event of death:

$$EPVBequest = \sum_{t=1}^{T} \frac{p_x q_{x+t} E(V_t)}{(1+r)^t}$$

Methodology

- S We model withdrawal plans: age 65 to 110 (115)
- S Benchmark Annuity
 - Ø **US** / German Mortality Tables
 - Assumptions about loadings
- Stochastic Model
 - Ø Price dynamics: GBM
 - 1967-2002 yearly real returns
 - German Data
 - **US-Data from Ibbotson**
 - 100,000 alternative paths for fixed withdrawal plans
 - (Alternative: IG-Approximation accord. Milevski et al.)
 - Ø Analytical closed form solution for variable withdrawal plans

Optimization Results: "Stand Alone Withdrawal Rules" (German case)

65

1/E(T) Rule

Benefits from Withdrawal Plan

20

39.80

Results for Male (Retirement Age 65): Benchmark Real Life Annuity €5.82 p.a./ €100 Strategy **EPV EPV EPV** Investment Weights (in %) Shortfall Benefits Bequest Equity Bonds Cash Real Annuity €5.82 97.29 0 0 Fixed Benefit = €5.82 3.58 93.41 53.19 20 80 0 Fixed Pct. = 5.82%12.58 92.53 66.06 30 70 0 1/T Rule Age 110 34.95 82.68 50 134.41 50

103.08

8.27

age

0

Impact of Mandatory Switching into a Life Annuity at Age 85 (German Case)

Results for Male (Retirement Age 65 Switching Age 75):								
Benchmark Real Life Annuity €5.82 p.a./ €100								
Strategy	EPV	EPV	EPV	Investm	ent Weight	es (in %)		
	Shortfall	Benefits	Bequest	Equity	Bonds	Cash		
Real Annuity €5.82	0	97.3	0					
Fixed Benefit until 85	2.8	↑ 103.4	33.5	15	80	5		
Fixed Pct. Opt ω =7.4%	7.4	108.8	32.3	25	75	0		
1/T Rule Opt Age 88	9.5	108.3	35.1	20	80	0		
1/E(T) Rule	5.4	104.1	→ 31.2	15	75	10		

Portfolio of Phased Withdrawal Plan and Deferred Life Annuity starting at Age 85

Results for Male (Retirement Age 65 Switching Age 75):								
Benchmark Real Life Annuity €5.82 p.a./ €100								
Strategy	EPV	EPV	EPV	Investm	ent Weight	s (in %)		
	Shortfall	Benefits	Bequest	Equity	Bonds	Cash		
Real Annuity 5.828	0	99.0	0	ı				
Fixed Payment until 85	5.3	100.0	34.4	50	40	10		
Fixed Perct. opt. 9.1%	13.4	110.1	33.7	79	21	0		
1/T-Rule (T=84)	10.0	110.2	21.2	50	36	14		
1/E(T)-Rule	♦ 14.6	111.9	♦ 37.7	68	32	0		

Comparison US vs. German Data

Rule	Risk	Benefits	Bequest	Equity Exposure	Withdrawal Fraction
Fixed Benefits - Stand Alone - Switching (85) - Deferring (85)	++ ++ ++	- ++ -+	++ +- ++	++ ++	
Fixed Fraction - Stand Alone - Switching (85) - Deferring (85)	+ + + +	++ + +	- 0 -+	++ ++ ++	+- -+ +-
1/T-Rule - Stand Alone - Switching (85) - Deferring (85)	+ + +	+- ++ +	-+ -+ 0	++ ++ ++	0 0 0
1/E(T)-Rule - Stand Alone - Switching (85) - Deferring (85)	+ + +	++ +	0 +- +-	++ ++ ++	

^{++ (--)} Substantial Higher (Lower) compared with German Data

0 no change compared with German Data

^{+ (-)} Higher (Lower) compared with German Data

^{+- (-+)} slightly higher (Lower) compared with German Data

Conclusions

- Phased withdrawal plans offer many advantages: flexibility, bequests, and possibly higher consumption than life annuities.
- Yet a phased withdrawal plan also requires that attention be devoted to asset allocation and withdrawal rules.
- To minimize the shortfall-risk of consuming less than a real annuity benchmark, retirees should invest their assets more in fixed income than in equities.
- For a fixed withdrawal rule compared to no annuity:
 - Mandatory deferred annuitization and/or a switching rule can enhance expected payouts & cut expected shortfall risk
 - But at cost of reduced bequests.

"The secret to living well is to die without a cent in your pocket" "But I seem to have miscalculated"

Source: Financial Times

BACKUP

Optimization Results: "Stand Alone Withdrawal Rules" (US case)

Benefits from Withdrawal Plan

65 age

Results for Male (Retirement Age 65):							
Benchmark Real Life Annuity €5.83 p.a./ US\$ 100							
Strategy	EPV	EPV	EPV	Investn	nent Weigh	ts (in %)	
	Shortfall	Benefits	Bequest	Equity	Bonds	Cash	
Real Annuity €5.83	0	99.0	0				
Fixed Benefit = €5.83	7.0	91.6	72.4	60	40	0	
Fixed Pct. = 5.83%	14.7	106.9	46.1	75	25	0	
1/T Rule Age 87	18.6	105.1	30.0	45	31	24	
1/E(T) Rule	12.4	112.6	39.0	63	37	0	

Impact of Switching into a Life Annuity at Age 85 (US case)

Results for Male (Retirement Age 65 Switching Age 75):								
Benchmark Real Life Annuity €5.82 p.a./ €100								
Strategy	EPV	EPV	EPV	Investm	ent Weight	ts (in %)		
	Shortfall	Shortfall Benefits		Equity	Bonds	Cash		
Real Annuity €5.82	0 99.000		0					
Fixed Benefit until 85	6.7	↑ 112.5	37.6	55	45	0		
Fixed Pct. Opt ω =7.4%	10.9	116.7	32.6	64	36	0		
1/T Rule Opt Age 88	13.0	119.4	34.2	63	37	0		
1/E(T) Rule	10.2	114.1	32.3	55	40	5		

Portfolio of Phased Withdrawal Plan and Deferred Life Annuity starting at Age 85 (US-Case)

Results for Male (Retirement Age 65 Switching Age 75):								
Benchmark Real Life Annuity €5.82 p.a./ €100								
Strategy	EPV	EPV	EPV	Investm	ent Weight	rs (in %)		
	Shortfall	Benefits	Bequest	Equity	Bonds	Cash		
Real Annuity 5.828	0	99.0	0					
Fixed Payment until 85	5.3	100.0	34.4	50	40	10		
Fixed Perct. opt. 9.1%	13.4	110.1	33.7	79	21	0		
1/T-Rule (T=84)	10.0	110.2	21.2	50	36	14		
1/E(T)-Rule	♦ 14.6	111.9	→ 37.7	68	32	0		

Summary Statistics for Annual Real Log-Returns on Stocks / Corp. Bonds / Cash 1967-2002

Asset Class	Mean	Volatility	Correlations		
	(% p.a)	(% p.a.)	Stocks	Bonds	Cash
Stocks	5.31 (5.53)	17.22 (25.36)	1	(0.235)	(-0.174)
Bonds	3.31 (3.98)	11.78 (5.21)	0.432	1	(0.326)
Cash	1.41 (2.84)	2.35 (1.69)	0.446	0.591	1

Parenthesis: Results for German Capital Market

Literature

Dus/Maurer/Mitchell (2004): "Betting on Death and Capital Markets in Retirement: A Shortfall Risk Analysis of Life Annuities versus Phased Withdrawal Plans", Working Paper, Pension Research Council, 1-2004.