Steepest Descent and the g-function Mechanism in Rigorous Semiclassical Focusing NLS Asymptotics

Stephanos Venakides
Department of Mathematics
Duke University

joint work with

Alexander Tovbis (UCF) and Xin Zhou (Duke)

Semi-classical focusing Cubic Schroedinger Equation (NLS)

$$i\epsilon q_t + rac{1}{2}\epsilon^2 q_{xx} + |q|^2 q = 0, \quad arepsilon o 0$$

One-parameter family of initial conditions (contains both solitons and radiation),

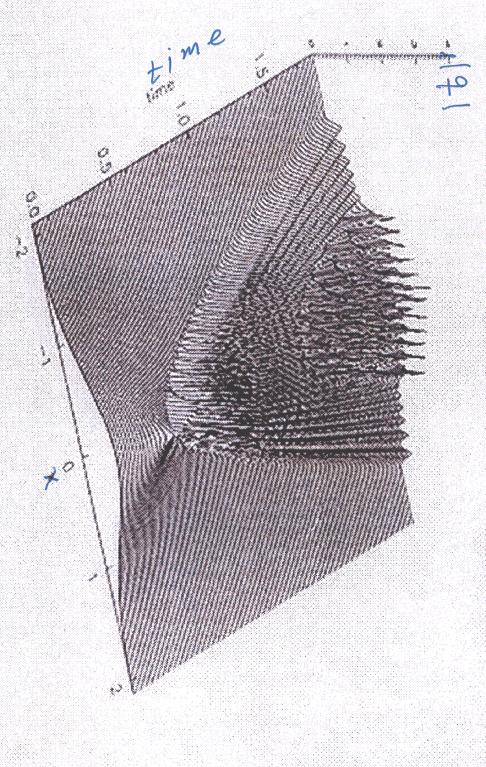
$$q(x,0) = A(x)e^{iS(x)/\epsilon}$$

$$egin{cases} A(x) = -\mathrm{sech}\; x, \ S'(x) = -\mu anh x, S(0) = 0, ext{parameter}: \mu \geq 0. \end{cases}$$

Goal: Asymptotic calculation of $q(x,t,\varepsilon)$, $\varepsilon \to 0$.

Results:

- Pure radiation: Global leading behavior of $q(x, t, \varepsilon)$ as $\varepsilon \to 0$; explicit large time asymptotic behavior.
- Solitons+Radiation: Leading behavior till second break
- Both cases: Rigorous error estimate



Cai McLaughlin Melaughlin

Figure 13: Semi-classical behavior: Focusing nonlinearity

LINEAR PROBLEM (E-20) , 9(x,0) = A(x) e $i\varepsilon q + \varepsilon^2 q = 0$ Solution by Fourier Transform $\varphi(x,t) = \frac{1}{2\pi\epsilon} \int_{-\infty}^{\infty} A(y) e^{\frac{i}{\epsilon} \left[S(y) + 2(x-y) - \frac{z^2}{2} \xi\right]} dy dz$ Stationary Phase Isteepest descent (x,t:parameters) Eikonal: $\nabla \varphi = 0 \quad \frac{\partial}{\partial y} \varphi = S(y) - Z = 0 \quad Z_t + Z_z = 0$ $\frac{\partial}{\partial z} \varphi = x - y - Z_t = 0 \quad (Burgers)$ $x - 0 \quad Solutions: (y,(x,t), Z,(x,t)) \quad (x,t)$ $x \quad = 0$ $y(x,t) \sim \sum_{j=0}^{N} C_j A(y_j) e^{\frac{i}{2}[S(y_j) - Z_j(x - y_j) - \frac{j}{2}Z_t^2]}$ modulated exponential solution (plane wave if yi, ?; real) CAUSTICS: N(x,t) = discontinuous

NONLINEAR

2(x,t)

>x,t

five linear wave phases

MAIN CONTRIBUTION
TO FOURIER
INTEGRAL
POINTS

two nonlinear wave-phases

 $\alpha(x,t)$

MAIN CONTRIBUTION
TO RIEMANN
HILBERT PROBLEM
INTERVALS (ARCS

LINEAR

INTERABLE NONLINEAR

Fourier Iransform (FT) Evolution 4FT Inverse FI (integral)

Scattering Transform (ST)

Evolution of ST Inverse ST (Riemann-Hilbert Problem (RHP)

Deift, Zhou

Deift, V, Tho.

Steepest Descent

S.D for RHP 9-function

for integrals mechanism fully nonlinear waveforms

Linear Superposition of phases

O-function superposition

rigorous treatment of endpoints:

RIEMANN-HILBERK PROBLEM (RHP)

Deift Kriecherbauer McLaughlin, V, Zhou.

Given V find m

Smx=mV

1 m(Z) -> I

Main Theorem. There exists a breaking curve $t = t_0(x), x \in \mathbb{R}$, with the following properties:

- The genus of the solution $q_0(x, t, \varepsilon)$ is zero below the curve, i.e. in the region $0 \le t < t_0(x)$;
- In the solitonless (pure radiation) case μ ≥ 2 the solution in the entire region above the breaking curve has genus exactly two. In the presence of solitons (μ < 2), there exists some function t₁(x), x ∈ ℝ, t₀(x) < t₁(x) ≤ ∞, such that the genus equals two in the region t₀(x) < t < t₁(x),
- The breaking curve is an even function, smooth and monotonically increasing for x > 0 with the asymptotic behavior

behavior
$$t_0(x) \sim \frac{x}{2\mu}, \ x \to +\infty,$$

$$t_0(x) = \frac{1}{2(\mu+2)} + \frac{2\pi\sqrt{\mu+2}}{5}x + o(x), \ x \to 0^+;$$

$$t_0(x) = \frac{t_0(x)}{breaking \ curve}$$
 (NL Caustic)

• In the genus zero region $(0 \le t < t_0(x))$, the solution is controlled by a point α_0 in the upper complex half plane that depends on x and t.

$$q_0(x,t,arepsilon) = \Imlpha_0(x,t)e^{-2rac{i}{arepsilon}\int_0^x \Relpha_0(s,t)ds}$$

• In the genus two region $(t_0(x) < t < t_1(x))$ the solution is controlled by three points in the upper half plane $\alpha_0, \alpha_2, \alpha_4$ that depend on x and t.

$$q_0(x,t,\varepsilon) = \Theta e^{\frac{2i}{\varepsilon}\Omega_1} \Im(\alpha_2 - \alpha_0 - \alpha_4),$$

$$\Theta = -\frac{\theta(-\frac{\hat{W}}{2\pi\varepsilon} - u_\infty + d)\theta(u_\infty + d)}{\theta(-\frac{\hat{W}}{2\pi\varepsilon} + u_\infty + d)\theta(-u_\infty + d)}.$$

Here the quantities Ω_1 , \hat{W} , u_{∞} , d are explicit (quadratures) functions of α_0 , α_2 , α_4 , in which the hyperelliptic function below plays a crucial part.

$$R(z) = \left(\prod_{j=0}^{2} (z - lpha_{2j})(z - ar{lpha}_{2j})
ight)^{1/2}$$

ullet Accuracy loc. unif. in $oldsymbol{x},oldsymbol{t}$ not on breaking curve

$$|q(x,t,\varepsilon)-q_0(x,t,\varepsilon)|=O(\varepsilon),$$

• modulational instability: The evolution system for the 2N + 1 functions $\alpha_0, \alpha_2, \cdots, \alpha_{4N}$ of x and t is elliptic.

Previous work

Small Dispersion Weak Limits from Dyson Determinant

- Lax, Levermore: KdV, pure soliton
- Venakides: KdV, pure radiation and periodic
- Deift, K T-R McLaughlin: Toda
- Jin, Levermore, D. W. McLaughlin: Defocusing NLS

Strong Limit (Leading Behavior)

 Venakides: KdV small dispersion (fully nonlinear waveform, Ansatz)

Steepest Descent for RHP (SD)

Deift, Zhou: mKdV, Painleve I, II, ...

g-function mechanism for Steepest Descent (fully nonlin. waves)

Deift, Venakides, Zhou: small dispersion KdV

Focusing NLS, early work

- Zakharov, Shabhat: Integration of focusing NLS
- D. W. McLaughlin: semiclassical analysis
- ullet ZS Satsuma, Yajima: spectral analysis for special potential $\mu=0$

Semiclassical Focusing NLS

- Bronski: distribution of e-values
- Kamvissis, Miller: NLS numerics reveal structure
- Ceniseros, Tian: NLS numerics reveal structure
- ullet Tovbis, Venakides: calculation of scattering data, $\mu>0$
- Kamvissis, K. T-R. McLaughlin, Miller: first breakthrough, pure soliton case ($\mu = 0$), use of steepest descent and g-function mechanism, complex contributing contours; variational formulation, small time leading behavior, connection between genus zero and two assuming breaking curve.
- Miller: continuum limit of pole structure

1) Find the enemy: RHP m, E, Vo) z-plane $m^{(0)}(2)$ 1 m_ (3) Real Axis (initial RHP contour) $m_{\perp}^{(0)} = m_{\perp}^{(0)} V(5)$ m, V:2×2 matrices 2) Weaken the enemy: · Relocate the enemy Give battle on ground · Peel offcontributions of your choice in the process final RHP (err) 3) Crush the enemy: Final RHP jump matrix: Ver = I + O(E)

Integrability of NLS (ZS, Zhou): LAX PAIR

$$\partial_x egin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} = -rac{i}{arepsilon} egin{pmatrix} z & q(x,t) \\ ar{q}(x,t) & -z \end{pmatrix} egin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} \quad ext{ZS system}$$

$$\partial_t \phi = B(z, q, q_x) \phi, \quad \phi = (\phi_1, \phi_2)^T$$
 Evolution System

NLS EMERGES AS THE COMPATIBILITY CONDITION:

$$\partial_x \partial_t \phi = \partial_t \partial_x \phi \iff q_t + q_{xx} + |q|^2 q = 0$$

(Cancellations reduce vector condition to a scalar one)

SOLUTION VIA DIRECT/INVERSE SCATTERING

- Work on the associated ZS system (LINEAR) Scattering matrix $S = S(z,t) : \phi_{out} = S\phi_{in}$ determined by the reflection coefficient $r_0 = r_0(z,t)$. Bound States \longmapsto Solitons.
- Direct Scattering Transformation (ZS): $q(x,0) \longmapsto r(z,0) \ (\ |x| \to \infty \ \text{asympt. of} \ \phi \ \text{at} \ t=0)$
- Evolution of Scattering Data (Evol. System): $r_0(z,t) = r_0(z,0)e^{4iz^2t/\varepsilon}$:) $\lim_{|x|\to 0} q(x,t) = 0$

Inverse scattering of ZS via RHP

Goal: To construct q(z) from the reflection coefficient $r_0(z)$ (for simplicity assume no bound states).

 $\Phi(z,x)$: ZS fundamental matrix $(\Im z \neq 0)$ determined by,

$$\Phi(z,x) \sim egin{pmatrix} \mathrm{e}^{-rac{izx}{arepsilon}} & 0 \ 0 & \mathrm{e}^{rac{izx}{arepsilon}} \end{pmatrix}, ext{ as } x
ightarrow +\infty$$

AND $\begin{cases} \operatorname{column} \ 1 o 0 \text{ when } \Im z > 0, \\ \operatorname{column} \ 2 o 0 \text{ when } \Im z < 0. \end{cases}$ as $x o -\infty,$

NON-ENTIRE NATURE OF **1**: RIEMANN-HILBERT PROBLEI

ODE theory: for $z \in \mathbb{R}$, we have $\Phi_+ = \Phi_- C$, where C = C(z) is a 2×2 matrix that is independent of x.

Normalization: $\Phi(z,x) \longrightarrow m(z,x)$ (remove oscillations),

$$m(z,x) \sim I + \frac{\tilde{m}(x)}{z} + O(z^{-2}), \quad \boxed{m_+ = m_- V}$$

$$egin{aligned} \mathrm{V}|_{z\in\mathbb{R}} = \left(egin{array}{cc} 1+|r|^2 & ar{r} \ r & 1 \end{array}
ight); \;\; r = r_0(z)e^{2izx/arepsilon}. \end{aligned}$$

 $\overline{ ext{Recovery}}$ of q from equation $q(x) = -2 ilde{m}_{12}(x)$

Rigorous asymptotic solution of the RHP with $oldsymbol{x}$ and $oldsymbol{t}$ fixed

Tool: Jump matrix factorization, contour deformation

Rules

- + to the left, to the right of the oriented contour.
- A RIGHT factor having a LEFT analytic continuation splits off to the LEFT on its own contour.
- A LEFT factor having a RIGHT analytic continuation splits off to the RIGHT on its own contour.

Goals

- 1. Achieve a contour that is the union of arcs over each of which the jump matrix is either constant (independent of z) or decays as $\varepsilon \to 0$.
- 2. Solve the <u>model</u> RH problem that neglects the decaying contours
- 3. Estimate the error

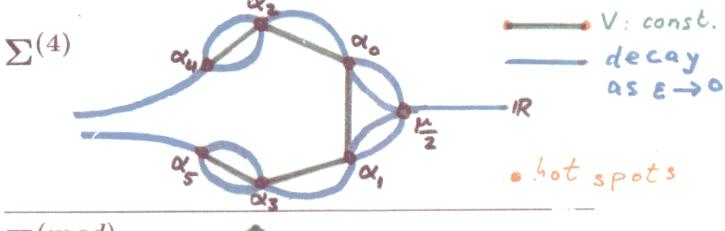
Overview of the Procedure

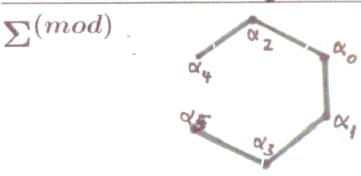
- green contour: V is constant in z piecewise.
- blue contour: V decays as $\varepsilon \to 0$

$$\begin{pmatrix} 1+|r|^2 & \bar{r} \\ r & 1 \end{pmatrix} = \begin{pmatrix} 1 & \bar{r} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ r & 1 \end{pmatrix}; r = \begin{bmatrix} e^{2if/\varepsilon} \\ r & 1 \end{pmatrix}$$

$$\sum^{(0)} \qquad \sum^{(1)} = \sum^{(2)} = \sum^{(3)}$$

- $(0) \rightarrow (1)$: Initial Factorization/Deformation
- (1)
 ightarrow (2): Stirling Approx. of $r_0(z)$
- (2) \rightarrow (3): g-function transf: $m^{(3)}=m^{(2)}e^{2ig(z)\sigma_3/\varepsilon}$
- $(3) \rightarrow (4)$: Factor./Deform.
- $(3) \rightarrow (4)$: V_3 factors in two ways (recall Goals)





Explicit solution through theta function

The Initial Data enter in function f

 $r_0(z;arepsilon)$ is the reflection coefficient of the initial data.

$$r(z;x,t,arepsilon)=r_0(z,arepsilon)e^{2i(xz+2tz^2)/arepsilon}$$

$$r(z;x,t,arepsilon) \sim egin{cases} e^{-rac{2i}{arepsilon}f(z,arepsilon)} & ext{when } z < \mu/2, \ e^{-rac{2i}{arepsilon}(f(z,arepsilon)+2\pi i(rac{\mu}{2}-z))} & ext{when } z > \mu/2 \end{cases}$$

$$f(z;x,t,arepsilon)=(rac{\mu}{2}-z)\left[rac{i\pi}{2}+\ln(rac{\mu}{2}-z)
ight] \ +rac{z+T}{2}\ln(z+T)+rac{z-T}{2}\ln(z-T) \ -T anh^{-1}rac{T}{rac{\mu}{2}}-xz-2tz^2+rac{\mu}{2}\ln2+rac{\pi}{2}arepsilon, \;\; ext{when } \Im z\geq$$

where positive values have real logarithm, and f=f(z,arepsilon;x,t) has analytic extension into the upper complex half-plane. $T=\sqrt{(rac{\mu}{2})^2-1}$.

BOTTOM LINE: Given f find h.

Error Analysis

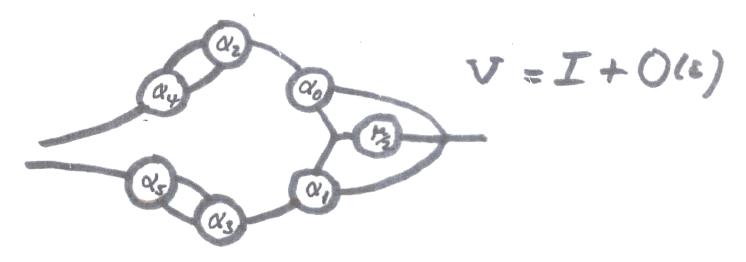
Construction of $m^{(app)}(z)$ (to peel off $m^{(4)}$).

- 1. $m^{(app)}(z)$ equals the solution of the model problem $m^{(mod)}(z)$ outside circles centered at the points α_j , $\bar{\alpha}_j$, and $\mu/2$ with radii $\delta>0$, small but independent on ε ;
- 2. $m^{(app)}(z)$ is a paramatrix of $V^{(4)}$ inside each circle i.e. it satisfies the jump conditions of the RHP $P^{(4)}$ inside these circles exactly;
- 3. the jump $m_+^{(app)}m_-^{(app)-1}$ of $m^{(app)}(z)$ across the circles is of order $I+O(\varepsilon)$ uniformly on the circles.

An easy calculation gives for q(x,t,arepsilon)

$$q = -2 \lim_{z \to \infty} z(M(z) - I)_{12} - 2 \lim_{z \to \infty} z(m^{(err)}(z) - I)_{12}$$

where $M(z)=m^{(mod)}e^{-\frac{2i}{e}g(z)\sigma_3}$.



The g function mechanism

Introduce the transformation $m^{(2)} o m^{(3)}$, $(h(z) = \mathsf{TBD})$,

$$m^{(3)} = m^{(2)} \left(egin{array}{cc} e^{rac{2i}{arepsilon}g(z)} & 0 \ 0 & e^{-rac{2i}{arepsilon}g(z)} \end{array}
ight); \;\; g(z) = rac{h(z) + f(z)}{2}$$

where the analytic in $\mathbb{C}\setminus \Sigma^{(2)}$ complex valued function g(z) is to be determined. The symmetry of the problem requires the Schwartz reflection invariance of g, i.e. $g(\bar{z})=\overline{g(z)}$.

$$V^{(3)}|_{z\in\Sigma^+}=\left(egin{array}{ccc} e^{rac{i}{arepsilon}(h_+-h_-)} & 0 \ -e^{rac{i}{arepsilon}(h_++h_-)} & e^{-rac{i}{arepsilon}(h_+-h_-)} \end{array}
ight)$$

Alternative factorizations of the jump matrix

Two types of factorization are given by the formulae,

$$\begin{pmatrix} a & 0 \\ -b & a^{-1} \end{pmatrix} = \begin{pmatrix} 1 & -ab^{-1} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & b^{-1} \\ -b & 0 \end{pmatrix} \begin{pmatrix} 1 & -a^{-1}b^{-1} \\ 0 & 1 \end{pmatrix}$$

$$= \begin{cases} \begin{pmatrix} 1 & 0 \\ -a^{-1}b & 1 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix}$$

$$= \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -ab & 1 \end{pmatrix}$$

The g function mechanism

Constancy and Decay Conditions

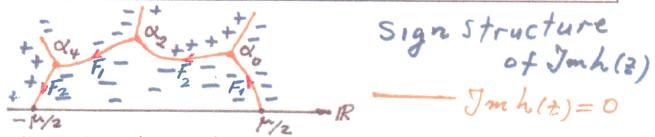
Let h=2g-f so as to deal with $h_+\pm h_-$ and not with g_++g_--f and g_+-g_- ; index j labels arcs.

$$V^{(3)}|_{z\in\Sigma^{+}} = \begin{pmatrix} e^{\frac{i}{\varepsilon}(h_{+}-h_{-})} & 0 \\ -e^{\frac{i}{\varepsilon}(h_{+}+h_{-})} & e^{-\frac{i}{\varepsilon}(h_{+}-h_{-})} \end{pmatrix}$$

F1:
$$\begin{cases} h_+ + h_- = 2W_j, \ (h'_+ + h'_- = 0) \end{cases}$$
 $\begin{cases} \Im h_- < 0, \text{ (right of contour)}, \ \Im h_+ < 0, \text{ (left of contour)}, \end{cases}$

F2:
$$\begin{cases} h_+ - h_- = 2\Omega_j, \ (h'_+ - h'_- = 0) \end{cases}$$
 $\begin{cases} \text{either } \Im h_- < 0, \ \text{or } \Im h_+ < 0. \end{cases}$

 W_j and Ω_j are real constants. On the contour $\Im h=0$



Equalities for $h'_+ \pm h'_-$ pose a scalar RHP for h'. Solution,

$$\frac{R(z)}{2\pi i} \oint_{fig8} \frac{f'(\zeta)}{(\zeta - z)R(\zeta)} d\zeta, \ R(z) = \sqrt{\prod_{k=0}^{4N+1} (z - \alpha_k)}$$

Real Const: IR, W, J 20, 22, Rf 3/2 カーカニー TRD $R(z) \pm \sqrt{(z-\alpha_0)(z-\alpha_0)(z-\alpha_0)(z-\alpha_0)(z-\alpha_0)}$ 122 Just 1 9(3-2)R(3) f'(s)

Z: inside fig8

The Moment and the Integral Conditions

$$h'(z) = \frac{R(z)}{2\pi i} \oint_{fig8} \frac{f'(\zeta)}{(\zeta - z)R(\zeta)} d\zeta, \quad z \text{ inside } fig8.$$

$$The fig8$$

$$contour$$

Moment Conditions (analyticity of g at infinity)

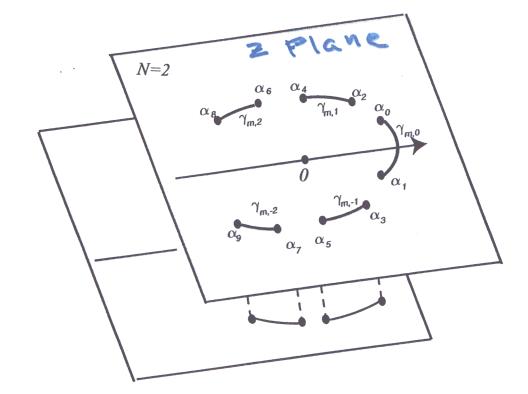
Moment conditions M_k : $\oint_{fig8} \frac{\zeta^k f'(\zeta)}{R(\zeta)} d\zeta = 0,$

with $k=0,1,\cdots,2N+1$. We obtain them by expanding $(\zeta-z)^{-1}$) in the integral in powers of z^{-1} .

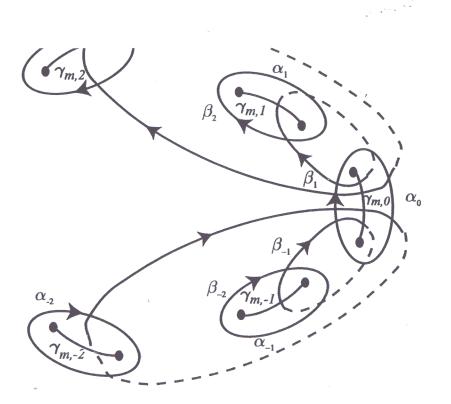
Integral conditions $(\Im h(\alpha_{2i})=0,\ i=0,1,2,\cdots,N)$

$$I_i$$
: $\Im \int_{rac{\mu}{2}}^{lpha_i} h'(\zeta) d\zeta = 0, \quad i = 1, 2, \cdots, N.$

Constants:
$$W_j = W_j(\alpha)$$
; $\Omega_j = \Omega_j(\alpha)$; $W_0 = 0$ $\Omega_{N+1} = 0$ (Norm.)



Riemann surface $\mathcal{R}(x,t)$

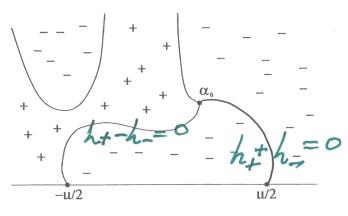


Basic cycles

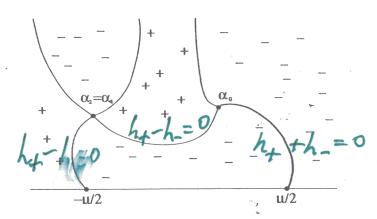
MECHANISM OF BREAKING

Contours: Junh=0

t: sigh Imh



Zero level curves of $\Im h$, pre-break



Zero level curves of $\Im h$, breaking point

$$h_{1} + h_{2} = W$$

$$h_{2} + h_{3} = 0$$

$$h_{4} + h_{4} = 0$$

$$h_{4} + h_{5} = 0$$

Zero level curves of $\Im h$, post-break

The points $lpha=(lpha_j)_{j=0}^{4N+1}$

- The constant jump matrices on the green contour can be expressed as functions of the α ONLY.
- ullet $\alpha = lpha(x,t)$ (dependence in the large space-time scale)
- The theta function solving the problem has form $F(\alpha; \frac{x}{\varepsilon}, \frac{t}{\varepsilon})$, i.e. it varies (oscillates) in the small space-time scale in x and t in a way that is governed by α , the latter being modulated in the large space-time scale.
- The number of fully nonlinear oscillatory phases in the waveform is 2N, where N=N(x,t).
- The theta function solution of the model RHP (all green contour) provides the leading asymptotic behavior of NLS.
- The main calculational task for having the leading behavior is the calculation of N and α .
- Error Estimate

Breaking and Loss of Connection

The required zero and sign structure for a given N holds while x, t change as long as:

- All α_j remain distinct;
- The ratio $\frac{h'(z)}{R(z)} \neq 0$ for any $z \in \gamma$;
- The contour γ stays away from singularities of f(z).

Breaking occurs at some x, t at which one of the above conditions is violated. Generically, it occurs on curves in the (x, t) plane that we call breaking curves, across which there is a jump in the genus N. A set of α satisfying the first two of the above conditions is called nondegenerate. Degeneracy can occur as the result of:

- 1. Collision between different α_{2k} in the upper half-plane (and the corresponding complex conjugates in the lower half-plane): death of a pair decreases the genus
- 2. Collision between the contour γ , which is a zero level curve of $\Im h(z)$, and any other branch of zero level curve of $\Im h(z)$: birth of a pair increases the genus.

The two events can be viewed as time-reverses of each other. In the case that we treat, the genus 2N=2 and we have $\alpha_0 \neq \alpha_2 = \alpha_4$. The Jacobian $|\frac{\partial F}{\partial \alpha}|$ becomes zero at this point. To establish the evolution through a breaking curve, we reparametrize the α and we obtain a nonzero Jacobian.

Off breaking curves: Evolution Theorem

Let $\alpha=(\alpha_0,\alpha_2,\alpha_4,\cdots\alpha_{4N})$ with distinct α_{2k} be a solution of the modulation system with genus 2N at some point (x_0,t_0) . Then the solution $\alpha(x,t)$ can be continued uniquely with the same genus into a neighborhood of (x_0,t_0) and $\alpha(x,t)$ is a smooth function of x and t.

The proof is based on the implicit function theorem and the following expression for the Jacobian of the modulation system. The Jacobian $\partial MI/\partial \alpha$ is given by

$$|\frac{\partial MI}{\partial \alpha}| = \det D \prod_{j=0}^{2N} |\frac{h'(\alpha_{2j})}{2R(\alpha_{2j})}|^2 \prod_{j < l} (\alpha_l - \alpha_j)$$

where the determinant is

$$\begin{pmatrix} \int_{\hat{\gamma}_{m,1}} \frac{dz_1}{R(z_1)} & \int_{\hat{\gamma}_{c,1}} \frac{dz_2}{R(z_2)} & \cdots & \int_{\hat{\gamma}_{c,N}} \frac{dz_{2N}}{R(z_{2N})} \\ \int_{\hat{\gamma}_{m,1}} \frac{z_1 dz_1}{R(z_1)} & \int_{\hat{\gamma}_{c,1}} \frac{z_2 dz_2}{R(z_2)} & \cdots & \int_{\hat{\gamma}_{c,N}} \frac{z_{2N} dz_{2N}}{R(z_{2N})} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \int_{\hat{\gamma}_{m,1}} \frac{z_1^{2N-1} dz_1}{R(z_1)} & \int_{\hat{\gamma}_{c,1}} \frac{z_2^{2N-1} dz_2}{R(z_2)} & \cdots & \int_{\hat{\gamma}_{c,N}} \frac{z_{2N}^{2N-1} dz_{2N}}{R(z_{2N})} \end{pmatrix}$$

The Jacobian is nonzero as long as all α_j are distinct and $\frac{h'(z)}{R(z)}\left|_{z-\alpha_j} \neq 0\right|$.

Passage through breaking curve, Change of Genus: Degeneracy Theorem

Suppose

$$rac{\Im h'(z_0)}{R(z_0)}=0, \quad \left(ext{by symmetry also:} \quad rac{\Im h'(ar{z}_0)}{R(ar{z}_0)}=0
ight),$$

for some point $z_0 \in \gamma$. Then:

- 1. Replacing R(z) with $\tilde{R}=R(z)(z-z_0)(z-\bar{z}_0)$ (the multiplicities of z_0 and \bar{z}_0 are thus increased by two) does not change the functions h'(z) and h(z), i.e. $h'(z;\tilde{R})=h'(z;R)$ and $h(z;\tilde{R})=h(z;R)$.
- 2. If the original α satisfy the MI conditions with genus 2N, then the new α corresponding to \tilde{R} , also satisfy the MI conditions with genus 2(N+1).
- 3. Conversely, if a degenerate $\alpha=\alpha_0,\alpha_2,\cdots\alpha_{4N}$ with $\alpha_{2k}=\alpha_{2k+2}=z_0$ satisfy the MI conditions with genus 2N, then the α that is obtained by removing the degenerate pair and its complex conjugate satisfies the MI conditions for genus 2(N-1). Furthermore, after the removal, h'/R=0 at the site z_0 of the removed pair.

Equations for the α 's (modulation equations, N=1)

$$egin{align} R(z) &= \sqrt{\prod_{j=0}^2 (z-lpha_{2j})(z-\overline{lpha}_{2j})}, \quad lpha_{2j} = a_{2j} + ib_{2j}, \ Q_i(z) &= \left(rac{(z-lpha_{2j})(z-lpha_{2k})}{(z-\overline{lpha}_{2j})(z-\overline{lpha}_{2k})}
ight) \end{array}$$

Moment conditions

$$egin{array}{ll} \mathsf{M}_0: & \int_{\mathbb{R}} rac{sgn\zeta}{|R(\zeta)|} d\zeta = 0 \ & \mathsf{M}_1: & \int_{\mathbb{R}} rac{(\zeta - a_{2j})sgn\zeta}{|R(\zeta)|} d\zeta = 8t \ & \mathsf{M}_2: & \int_{\mathbb{R}} rac{(\zeta - a_{2j})(\zeta - a_{2k})sgn\zeta}{|R(\zeta)|} d\zeta = 2x + 8ta_{2i} \ & \mathsf{M}_3: & \int_{\mathbb{R}} \left[1 - rac{(\zeta - a_0)(\zeta - a_2)(\zeta - a_4)sgn\zeta}{|R(\zeta)|}
ight] d\zeta \ & = & 4t(b_0^2 + b_2^2 + b_4^2) + 2 \end{array}$$

Integral conditions for α_{2i} (True also for subscripts 2j, 2k)

$$\begin{split} \Im \left[\pi i (|a_{2i}| - 1) - 8ti \int_{a_{2i}}^{\alpha_{2i}} \sqrt{b^2 - y^2} Q_i(z) dy \right] \\ + \Im \left[\int_{a_{2i}}^{\alpha_{2i}} \int_{\mathbb{R}} \frac{Q_i(z) \sqrt{b^2 - y^2} sgn\zeta}{(\zeta - z) Q_i(\zeta) \sqrt{(\zeta - a)^2 + b^2}} d\zeta dz \right] = 0 \end{split}$$

Summary of Work Required

ullet Solve System of equations for the $lpha_{2i},\,i=1,2,\cdots,4N$

CATCH: For what value of N?

ANSWER: For the value of N for which there is a connection from $\mu/2$ to $-\mu/2$ by a zero-level curve of $\Im h$ satisfying the above sign structure

We may start the procedure at t=0 where N=0 and evolve in time.

Derivation of inequalities

$$\mathsf{M}_1: \qquad b_j b_k < rac{\pi}{64t^2}; \ j
eq k \ \ (\mathsf{two} \ \mathsf{smaller} \ b < rac{\sqrt{\pi}}{8t})$$

$$M_3: a_0 + a_2 - a_4 < 2 + 4t(b_0^2 + b_2^2 + b_4^2)$$

$$|a_{2j}| = 1 + 2tb_{2j}^2
u_j + \mathrm{O}(b_{2j})$$

where $|
u_j| < 1; \;\; j = 1, 2, 3$.

 $\mathbf{1}^{st}Inequality:$ Positive Integrand, Cauchy-Schwartz

2ndInequality: Positive Integrand, Area argument

3rdRelation: Bound on double integral.

Theorem (pure radiation $\mu \geq 2$, for simplicity $\mu = 2$)

All three a_{2j} and all three b_{2j} are bounded for $t \leq \infty$. As $t \to \infty$, the genus 2 region is |x| < 4t and for x > 0 and,

$$a_0 \rightarrow 1$$
, $a_4 \rightarrow -1$, $a_2 \sim -x/4t$,

$$b_0 \sim e^{-8t+2x}, \ b_4 \sim e^{-8t-2x}, \ b_2 \sim \sqrt{\frac{1}{2t}}(1-\frac{x}{4t})$$

Directions

- · Long-time asymptotics in the presence of solitons. Does N(t) -> 20 as t-> \(\tau \le 20 \)?
- · Eigenvalues of the 25 problem: Facing the lack of a Sommer feld eigenvalue condition.
- Non analyticity
 Initial Data
 Scattering Data
 Chaotic behavior?