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Semi-classical focusing Cubic Schroedinger
Equation (NLS)

1€q; + %Ez%m + lqlzq =0, e—0|

One-parameter family of initial conditions (contains both
solitons and radiation),

q(x,0) = A(x)eS*)/¢

A(x) = —sech z,

S’(x) = —ptanhx, S(0) = 0, parameter : £ > 0.

Goal: Asymptotic calculation of g(x,t,e), € — 0.

Results:

e Pure radiation: Global leading behavior of g(x,t, &) as
e — 0; explicit large time asymptotic behavior.

e Solitons+Radiation: Leading behavior till second break

e Both cases: Rigorous error estimate
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Main Theorem. There exists a breaking curve
t = to(x), « € R, with the following properties:

e The genus of the solution qo(x,t,€) is zero below the

curve, i.e. in the region 0 < t < to(x);

e In the solitonless (pure radiation) case p > 2 the
solution in the entire region above the breaking curve
has genus exactly two. In the presence of solitons
(n < 2), there exists some function t;(x), © € R,
to(x) < t1(x) < oo, such that the genus equals two in
the region to(x) < t < t1(x),

e The breaking curve is an even function, smooth and
monotonically increasing for @ > 0 with the asymptotic

behavior
~ T
to(x) ~ —, x — +o0,
2p
1 2t/ + 2
to(z) = PT 22+ o(x), © — 0ty
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In the genus zero region (0 < t < tg(x)), the solution
18 controled by a point ag in the upper complex half
plane that depends on x and t.

o (:L’, t, 6) — (3“040(&3, t)e~—2§' 5 Rao(s,t)ds
In the genus two region (to(x) < t < t1(x)) the
solution is controled by three points in the upper half

plane ag, g, a4 that depend on x and t.

qgo(xz,t,e) = @e* 1%((12 — (g — Qy),

- — 0(—27rs

9(—

Uoo + d)O (oo + d)

27e

Here the quantities €24, W, Uoo, d are explicit
(quadratures) functions of ag, oz, g, in which the
hyperelliptic function below plays a crucial part.

[ 2 1/2
R(z) = kﬂ (2 = @2;) (2 — Gizy)

Accuracy loc. unif. in x,t not on breaking curve
) | g(x, t, e) — qo(z, t, 5) !: O(&‘),

modulational instability: i7.e evolution system for
the 2IN + 1 functions cgy @2y yaanN of © and t is
elliptic.



Previous work
Small Dispersion Weak Limits from Dyson Determinant

e Lax, Levermore: KdV, pure soliton

e Venakides: KdV, pure radiation and periodic

e Deift, K T-R McLaughlin: Toda

e Jin, Levermore, D. W. McLaughlin: Defocusing NLS
Strong Limit (Leading Behavior )

e Venakides: KdV small dispersion (fully nonlinear
waveform, Ansatz)

Steepest Descent for RHP (SD)

e Deift, Zhou: mKdV, Painleve I, I, ...

g-function mechanism for Steepest Descent (fully nonlin. waves)

e Deift, Venakides, Zhou: small dispersion KdV

Focusing NLS, early work

e Zakharov, Shabhat: Integration of focusing NLS
e D. W. McLaughlin: semiclassical analysis

e /S Satsuma, Yajima: spectral analysis for special
potential 4 = 0



Semiclassical Focusing NLS

Bronski: distribution of e-values
Kamvissis, Miller: NLS numerics reveal structure
Ceniseros, Tian: NLS numerics reveal structure

Tovbis, Venakides: calculation of scattering data, u > 0

Kamvissis, K. T-R. McLaughlin, Miller: first
breakthrough, pure soliton case (i = 0), use of steepest
descent and g-function mechanism, complex contributing
contours; variational formulation, small time leading
behavior, connection between genus zero and two
assuming breaking curve.

Miller: continuum limit of pole structure
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Integrability of NLS (ZS, Zhou): LAX PAIR

Oy 1 = —3. ‘ 1(z, 1) 1 ZS system
¢2 € (j(az,t) —z ¢2

O = B(Z, q, Qm)¢9 ¢ = (¢1a ¢2)T Evolution System

NLS EMERGES AS THE COMPATIBILITY CONDITION:
0501 = BDud <=iigt + G + |a|?q = 0

(Cancellations reduce vector condition to a scalar one)

SOLUTION VIA DIRECT/INVERSE SCATTERING

e Work on the associated ZS system (LINEAR)
Scattering matrix S = S(z,t) : pout = SOin
determined by the reflection coefficient ro = ro(z,t).
Bound States —— Solitons.

e Direct Scatterlng Transformatlon (ZS):

(q(m,O) — 'r(z,O) ( || — oo asympt. of ¢ at t = 0)
e Evolution of Scatterlng Data (Evol. System):
Po(z,t) = ro(z,0)e%=’ t/J.) im0 g(xz,t) =0

e Inverse Scattering Transformation (ZS):

7 76(3, t) — q(=x, t)i&(Riemann-Hilbert Problem for fund.
“matrix ® of ZS as a function of spectral variable z)




Inverse scattering of ZS via RHP

Goal: To construct g(z) from the reflection coefficient
r9(2) (for simplicity assume no bound states).

®(2,x): ZS fundamental matrix (Iz 7% 0) determined by,

e— % 0
P(z,x) ~ ( izm) , as  — 400

0 e e

column 1 — 0 when &z > 0,
AND
column 2 — 0 when 8z < 0.

NON-ENTIRE NATURE OF ®: RIEMANN-HILBERT PROBLEI

ODE theory: for z € R, we have | ®, = ®_C |, where
C = C(2z) is a 2 X 2 matrix that is independent of x.
Normalization: ®(z,x) — m(z,x) (remove oscillations),

m(z,x) ~ I+ —L—) + O(=z "2), my =m_V
1 2 7 :
VIzeR _ + I’PI r . = ro(z)em,zm/s-
T 1
Recovery of g from equation | g(x) = —2m12(x)




Rigorous asymptotic solution of the RHP with
x and t fixed

Tool: Jump matrix factorization, contour deformation

Rules
e 4 to the left, — to the right of the oriented contour.

e A RIGHT factor having a LEFT analytic continuation
splits off to the LEFT on its own contour.

e A LEFT factor having a RIGHT analytic continuation
splits off to the RIGHT on its own contour.

Goals

1. Achieve a contour that is the union of arcs over each of
which the jump matrix is either constant (independent of
z) or decays as € — 0.

2. Solve the model RH problem that neglects the decaying
contours

3. Estimatg the error



Overview of the Procedure

@ green contour: V is constant in z piecewsse
® blue contour: V decays as € — 0

. . .
14+ |r|* 7 _ 1 7 1 0 - e2ifle
T 1 0 1 r 1 | -
Z Wy s . |
py 5 Di ' #—%ﬂ

o i
3:(0) (1) — »(2) ; $(3)
(0) — (1) : Initial Factorization/Deformation
(1) — (2) : Stirling Approx. of r¢(z)
(2) — (3) : g-function transf: m(®) = m(2)e2i9(z)oa/e
(3) — (4) : Factor./Deform.
Vs factg's in two ways (recall Goals)

through theta function

* {Explicit solution




The Initial Data enter in function f

ro(2; €) is the reflection coefficient of the initial data.

r(z;z,t,e) = ro(z, 5)82i(wz+2t22)/5

e~ T f(2€) when z < n/2,

r(z: .t E) ~ .
( s Ly Ly ) e_%(f(z,e)+2‘ﬂ"i(%_z)) when 2z >“’/2

Flzete) = (5 —2) |5 + In(3 - 2)

T - T
ot ln(z—l—T)—I—z

In(z —T)

: T v
— T tanh™*! o Xz — 2tz2 + %lnz + 56’ when &z >
—2— L o N i
where positive values have real logarithm, and
f=f(z,e;x,t) has analytic extension into the upper
complex half-plane. T = \/(%)2 — 1.

BOTTOM LINE: Given f find h.



Error Analysis
Construction of m(@PP)(2) (to peel off m®¥).

1. m(@PP)(2) equals the solution of the model problem
m(™ed) () outside circles centered at the points o, &;,
and /2 with radii 6 > 0, small but independent on &;

2. m(@PP)(2) is a paramatrix of V(4) inside each circle i.e.
it satisfies the jump conditions of the RHP P (%) inside
these circles exactly;

3. the jump mgpr)m(fpp)”l of m(@PP)(2) across the
circles is of order I + O(e) uniformly on the circles.

An easy calculation gives for g(x, t, €)

Z—¥y 00

q= —2 lim Z(M(Z)'—'I)lg—“z lui—-)»nc}o z(m(e’”")(z) - I)12

A"

O(e)

where M (z) = m(moed) g—g(z)os

V:I'FO(&)




The g function mechanism

Introduce the transformation m(? — m®) (h(z)-TBD),

e=9(2) 0 _ h(z) + f(z

m® = m® e -

0 e“’”"zg"g(z)

where the analytic in C \ 3(2) complex valued function g(2)
is to be determined. The symmetry of the problem requires
the Schwartz reflection invariance of g, i.e. g(Z2) = g(z) .

es(h+—h-) 0

IzEE .,._e“é(h++h“) emé;(h+mfzm)

Alternative factorizations of the jump matrix

Two types of factorization are given by the formulae,

( 1 —ab? 0 b '\ [1 —a bl
0 1 —b 0 0 1

¢ /.
1 0 a 0

—a b 1 0 a !




The g function mechanism

Constancy and Decay Conditions

Let h = 2g — f so as to deal with h + h_ and not with
g+ +9g- — fand g4 — g_; index j labels arcs.

3) eechy—h_) 0
V lzéS“f‘ —_ q i
....ez(h++h~) e“‘i(h‘*'"h’”)

— e ot
e - — ot mameea

F1: hy +h_ =2W; Sh_ < 0, (right of contouy,
(. +h=0) Shy < 0, (left of contour)

e o
s o e

—
s

Eo. hy —h_ =2Q;, either Sh_ < 0,
| - =0 or Shy < 0.

i
e e

— S ———

W; and 2 are real constants. On the contour Sh = 0

o

Spgn. Structure

of JmA(2)
Jps Jm ht2)=0

72

Equalities for h’_ 4 h’ pose a scalar RHP for h’. Solution,

R(z) 1<)
21t Jigs (€ — z)R(Q)

d¢, R(z) = \J Il &—ax
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The Moment and the Integra!l Conditions

R(z) f'(<)

h(z)=—— figs (C — z)R(C)d

¢, =z inside f1g8.

The P!}?
- contour
g a
¥s-
W‘

Moment Conditions (analyticity of g at infinity)

. k gt
Moment conditions M}, : f CniiQ d¢ = 0,

rigs  R({)

with k = 0,1,--- ;2N + 1. We obtain them by expanding
(¢ — z)71) in the integral in powers of 27 1.

Integral conditions (Sh(ag;) =0, ¢ =0,1,2,--- ,N)

§ &4
I; - %/ h(¢)d¢ =0, i=1,2,---,N.
B
2

_Cowstau{s ' W,j = M-‘[oc) ; ﬁJ,z J?J.(o();
W =0 \QN+IZO ’(Nt,f&m-)

o




Basic cycles




MECH An/ISHM 0F BREARINGS

Zero level curves of Sh, pre-break

Zero level curves of Sh, breaking point

w2 w2

Zero level curves of Sh, post-break



The points o = (043)4N+1

The constant jump matrices on the green contour can be
expressed as functions of the o« ONLY.

o = a(x,t) (dependence in the large space-time scale)

The theta function solving the problem has form

F(as 2, g) I.e. it varies (oscillates) in the small
space-time scale in @ and ¢ in a way that is governed by
«, the latter being modulated in the large space-time
scale.

The number of fully nonlinear oscillatory phases in the
waveform is 2N, where N = N (z,t).

The theta function solution of the model RHP (all green
contour) provides the leading asymptotic behavior of NLS.

The main calculational task for having the leading
behavior is the calculation of N and .

Error Estimate



Breaking and Loss of Connection

The required zero and sign structure for a given IN holds
while &, t change as long as:

e All a; remain distinct;
e The ratio % (Z) # 0 for any z € ~;

e The contour «y stays away from singularities of f(z).

Breaking occurs at some x,t at which one of the above
conditions is violated. Generically, it occurs on curves in the
(z,t) plane that we call breaking curves, across which
there is a jump in the genus IN. A set of « satisfying the first
two of the above conditions is called nondegenerate.
Degeneracy can occur as the result of:

1. Collision between different cizx in the upper half-plane
(and the corresponding complex conjugates in the lower
half-plane): death of a pair decreaces the genus

2. Collision between the contour =, which is a zero level
curve of Sh(z), and any other branch of zero level curve
of Sh(z) : birth of a pair increases the genus.

The two events can be viewed as time-reverses of each other.
In the case that we treat, the genus 2IN = 2 and we have
a9 # az = ay. The Jacobian I%l becomes zero at this
point. To establish the evolution through a breaking curve, we
reparametrize the @ and we obtain a nonzero Jacobian.



Off breaking curves: Evolution Theorem

Let a = (o, 2, g, + - - ayN) with distinct aag be a
solution of the modulation system with genus 2N at some
point (xg,%t0). Then the solution a(x, t) can be continued
uniquely with the same genus into a neighborhood of (z, to)
and a(zx, t) is a smooth function of = and ¢.

The proof is based on the implicit function theorem and the
following expression for the Jacobian of the modulation
system. The Jacobian OM I /O« is given by

OMI '(a2 )
I——I——de DHI : |2H(az—aa)
ZR(QZJ)
where the determinant is
/ f : dzq f dzo e f dzan
ﬁm,l R(zl) "i’c,l R(Zz) ;i’c,N R(ZZN)
f z1dzq f Zodzo Ve f zZondzan
Ym,1 R(21) Ye,1 R(22) Ye,N R(22N)
\f 2N “ldz, f zzzN_ldzg L. f~ zgll:,’—ldng
Ym,1 R(Z1) Ye,1  R(22) Ye, N  R(z2nN)

The Jacobian is nonzero as long as all a; are distinct and
h'(z)
K |y 0.




Passage through breaking curve, Change of
Genus: Degeneracy Theorem

Suppose
Sh! Sh!(z
Sh'(20) = 0, (by symmetry also: e (_ZO) = O) s
R(20) R(Zo)

for some point zg € 4. Then:

1. Replacing R(z) with R = R(z)(z — 20)(z — Zo) (the
multiplicities of zg and Zg are thus increased by two)

does not change the functions h/(2) and h(z), i.e.
h'(z; R) = h'(z; R) and h(z; R) = h(z; R).

2. If the original a satisfy the MI conditions with genus 21V,
then the new a corresponding to R, also satisfy the Ml
conditions with genus 2(IN + 1).

3. Conversely, if a degenerate a@ = g, Ota, * - * g With
Q2 = Oigp+2 = 2o satisfy the MI conditions with genus
2N, then the ax that is obtained by removing the
degenerate pair and its complex conjugéte satisfies the MI
conditions for genus 2(IN — 1). Furthermore, after the
removal, h/ /R = 0 at the site zo of the removed pair.



Equations for the a’s (modulation equations, N-—1)

R(z) = \ ﬁ(z — azj)(z — Qgj), g = azj + by,
P
Q= (e o)
Moment conditions
ot i =
e [ S =
M, : /]R (¢ — az;i)|(}§(;)rzk)89n€dc — 5 4 Bl
Y /]R [1 ~ (€—a0)(¢ -I-I;L(zg))(’c -—-a4)sgnC] dc

=  4t(b2 + b2 +b3) + 2

Integral conditions for aug; (True also for subscripts 2j, 2k)

3 |milasi] — 1)~ 8ti [ V5~ 17Qu(=)d]

azq

- oz; Qi(z) \/bz — y2sgnl d dzJ e
" [[Lz /IR (¢ — 2)Qi(€) /(¢ — a)? + b2 ¢




Summary of Work Required
e Solve System of equations for the cvg;, ¢ = 1,2, -+ 4N

CATCH: For what value of N?

ANSWER: For the value of N for which there is a connection
from p/2 to —p/2 by a zero-level curve of Sh satisfying the
above sign structure

We may start the procedure at t = 0 where N = 0 and
evolve in time.



Derivation of inequalities

T , VT
Mj : bjbr, < oaz’ J # k (two smaller b < _87)
M3: a0+a2—a4<2+4t(bg+b§+bi)
l; : laz;| =1+ 2tb§jVj + O(b2;)

where |v;| < 1; 7 =1,2,3.

1%* Inequality : Positive Integrand, Cauchy-Schwartz
2"%I'nequality :  Positive Integrand, Area argument

3"¢Relation : Bound on double integral.

Theorem (pure radiation pu > 2, for simplicity pu = 2)

All three az; and all three by; are bounded for £ < co. As
t — oo, the genus 2 region is |x| < 4t and for £ > 0 and,

apg —> 1, ag — —1, ag ~ —213/4t,

1 T
ba ~ e-—-8t+2m ba ~ e——8t—2w bo ~ \/_ 1 — —
0 s U4 9 2 Zt( 4t)
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