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NLS with Small Viscosity. Lower Bounds for the Space Derivatives of the Solutions.
Andrei Biryuk.

In the late nineties Kuksin [1] introduces a method for obtaining lower bounds for spatial derivatives of solutions of Schrodinger
type equation with small “viscosity”. The bounds are in terms of negative powers of viscosity. Here we reconstruct his ideas

and use them to obtain slightly better estimates.
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If e¥() = a — bi with b > 0 and, say, we are considering |

eq.(1) on a bdd domain Q with zero Dirichlet BC, then
|u(t’ ')|L2 < exp(—/\lbyt)lu(O, ')le'

Here A; is the first Dirichlet-eigenvalue for (—A) in Q.

Hence the L? norm decays by a time > v~!. Despite
this fact, solutions of (1) develops a short scale (i.e. the
derivatives become big) by the time ~ p~1/3,
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Proof of Theorem K4 given Theorem K3.

Opu = ie"vAu + ilu|*Pu (1"

Multiplying (1’) by @, integrating over period, and taking the real part we obtain
50|ulld = —Re(ie™v)|ull} < 0.
Similarly, multiplying (1') by u in H™ we get

L0uull?, = —Re(Gev)[lull? .y — Im (Juu,u),, < [|lul* u

IR
m

Hence 4 ||ul|,, < ”lu|2pu” and (& llull,,,) , < ”|u|2puH , where (a); = max{0,a}.
m m
The Key Lemma is:
Let f € C*([0,T);R) (or Lipschitz or even only absolutely continuous function) then

T
/ (%(t)) dt > sup f(t) — f(0).
0 + te(0,T]

From the Sobolev inequality ||ul| ;3+e > clu|r~ we have

by Thm K3 —(2=)m
llu(to, Mlm+z+e = clulto,)lom > ™3

for m > 2. Re-denoting m + § + & with m and “playing” with €, ¢’ we obtain
lulto, )lm > ey~ 3(m=%-¢) for m>2+ 3.

Applying the “Key Lemma” we obtain
T 1 n
_/ (%”U“m)+ dt > cy=3(m=5-9) for small v
0

since ||u”(0,-)||m is bounded. Here T = v~1/3; “for small v” means v € (0, v c).
2 2p— 22 1422
Lemma 2. Letm > 2. Then |||u pul <Clullg” ™ Jlullp ™.

Proof. Fix positive § < min{%,m—3}. The proof follows from the chain of inequalities:

2 2 2p—22 pn
PP u| < ull wl32 < Ch lll el g il s < il llle? ™ [l

The second inequality is the Sobolev interpolation for L>°. The last is just an interpolation
of H?® norms (see appendix, Lemma A2). The first inequality follows from the inequality

19l < Crmn (£l 191l + 1Fllm 191 po0)

which will be proven in the appendix (Lemma A1). O
Since L? norm is non-increasing with time, we have from Lemma, 2:

T
/ ||u||:n+€T dt > cu—%(m“%"e)7 where T = v~1/3,
0

2
For o« < 2 we have —%fOT At > (F fOT f*)=. Using this for @ = 1+ 2% and f(t) =
llu(t, )], we get

,—1/3

el e
0

Since € > 0 is arbitrary, we can kill the constant C by decreasing vy, .. Theorem K4 is
proven. O



§ Some additional results.

Here we follow in part [2,chpt 4].
Let f : Ry — R be any smooth function. Consider the equation

Oyu = ie™VvAu + iuf(|ul). (xm

If f(z) = 2?P we the get “standard” NLS equation (1). Before we start this presentation,
we remark that all constants bellow also depend on the dimension n the nonlinearity f,
but not on the real function ¥ = ¢(¢,z,u,...,w,...) and small positive parameter v.

Theorem K3’. Let Q@ C R be any open set. Then for any real A < co and o > 0
there exist positive constants vo > 0 and c2,c3,c4,... > 0 such that for any smooth
function u : [0, +00) x Q@ — C such that

e sup [u(0, )] < 4,
Q

o ose f(u(0,))) > 7,

o u satisfies equation (1) in the interior of the time-space cylinder [0,00) x Q,
for any m > 2 and for any positive v < vy we have:

,—1/3

Cm 1/3 D™y
om/s SV /0 Dz |L°°(Q) dt.

Theorem K3’ follows from
Theorem K3”. Under the assumptions of Theorem K3' there erists T = T'(u) < v~1/3
such that

T
c m
(le)nm/2 D %/0 %iuﬂ(n) dt form 22 and v € (0,vp)
and

sup |u(t,z)] <2A and Vte€[0,T] osclu(t,-)] > §.
[0,T]x$2 Q

Lemma. Let f : [0, A] - R be a continuous function. For any o > 0 there exists o5 > 0
such that if there ezist a,b € [0, A] such that f(b) > f(a) + o then there ezists c,d € [a,b]
such that

209 -neighborhood of the numbers 0, ¢ and d do not intersect and

sup flz) > inf flw)+%.
z€[d—02,d+02) y€E[c—o2,c+02]

Theorem K3" follows by a simple extrapolation from
Theorem K3'’/. Let the domain 2, the positive real numbers A, o and vy, and the
function v satisfies the assumptions of Theorem K3'. Let oy be as in previous lemma.
Then there exists ky > 0 such that for any positive v < vy one of the following is true

T
/ V|Au|pe(qydt =02 for some T =T(u) < y1/3
0

or
,—1/3 ,—1/3

/ V]Au|peo(qydt <oz and Vs / VUl peo () dt > kyv~1/3,
0 0

We give a proof of Theorem K3" on the next page. For simplicity we will assume
that f(|ul) = |u|*”,
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Appendix.

For a smooth function f defined on an n-dimensional torus T" = R" /(¢Z)™ we define
the H™ Sobolev seminorm as follows:

n

17112, = /((—A)"‘f)fdm= >N Dfl = Y e

|a|=m J1sejm=1

Here (7)) = ;;.I'oil;—". Note that 37,,_,, (o) = pm

[e3
Lemma Al. Let f and g be smooth functions, defined on an n-dimensional torus.

Let m > 0. Then )
1 gllm < ™4™ (Iflpeo gl + £l 191 oo )-

Proof. It is sufficient to estimate every term of the form |—i—iﬂ’—L | 12+ We note that
there are n™ many of them. Using the Leibniz rule of differentlatmg the products we
find it is sufficient to estimate |(D°‘ ) (D" g)‘ 12 for any multi-indexes @ and 3 such that
|a + B| = m. We note that we have that for any multi-index v with v = m the Leibniz
expansion of D7(fg) has 2™ many terms of the form (D*f)(DPg) with o + 8 =
Applying the Holder inequality we obtain

|( Dﬁg)‘Lz\ Da | = |(DB IL%HT

Next we use Gagliardo-Nirenberg inequality

_ 112l Ll
(DA g < A1IOn1oD A g 5

[see Lars Hérmander, “Lectures on nonlinear hyperbolic differential equations”, Springer
1997; pp. 106-107] to obtain

(DD g [(DP9)] g <A™ 1= 1 gl = (gl £l = -

Using the inequality A*B'~% < sA + (1 — s)B < A+ B we arrive at
2 1 121312
[(DF)(DPg)| . < 4™ 1B ( £ L Mgl + 1] oo 11 £1l) -

Flnally, using |a)? + |B8]2 > |a| + || = m, we have 2mpmgm’—lal®=I8]* ¢ gmpymygm?—m

~
n™4™" . Lemma is proven. O

Lemma A2. For fized f the function m — ||f||,, is log-convez.
Proof. Consider the Fourier representation f(x) = Y <z~ fr exp(27”k S22 then

2 m
1Al =€ ()™ Y kP fel.

kezZn

It is sufficient to prove that the map m — 3 |k|2™|fi|? is log-convex. This follows from
the Holder inequality

D kPOt mama fi2 = N (k™| fo?)* (kP72 fi)! 7 <

O kP 17al?)* (O kP 1 ful?)

Here s € [0, 1]. O



