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9-Field Head & Neck IMRT Case
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n α depends on the LET of the radiation (photons and 
electrons are low LET, heavy charged particles and 
neutrons are high LET)

n β increases with increasing dose rate and decreasing LET

Fractionated Radiotherapy: Dose



n Hypothesis: NTCP depends on secondary organization of 
target cells into “functional subunits” (FSUs) e.g. nephrons 
(kidney)

n The probability that an FSU will be killed by a given dose 
depends on the number N and sensitivity of target cells in 
each FSU 

Fractionated Radiotherapy: Dose



n Modern EBRT is delivered with low-LET photons and 
electrons, at high dose rates. Therefore for homogeneously 
irradiated normal tissues (x constant) the density of 
sterilized FSUs d = prob{FSU sterilization} can be 
modeled with 2 parameters (A and B)

n Modern EBRT is however also characterized by highly 
inhomogeneous dose distributions, in which case d would 
be modeled with 3 parameters A, α, and β.

Fractionated Radiotherapy: Dose



n When the same dose is delivered to different volumes 
(areas, lengths) of normal tissue such as the spinal cord (in 
the treatment of lung cancer) or the rectal wall (in the 
treatment of prostate cancer), NTCP is higher in the larger 
of the two volumes (the “volume effect”)

n Example: uniformly irradiated lengths (4 and 20 cm) of 
canine spinal cord (Powers et al. 1998): 

Fractionated Radiotherapy: Volume



Fractionated Radiotherapy: Volume
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Dose-volume histogram
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Site Percolation Theory

n Let M = (mij) be a random n x n binary matrix with
mij = 1 with probability p and 0 with probability 1 - p
mij and mkl are independent if (i,j) ≠ (k,l)

n An s-cluster is an isolated grouping of s adjacent 1s in M, 
where adjacency means horizontal or vertical neighbors 
(not diagonal). For example:

has one 1-cluster, two 2-clusters, and one 4-cluster for 
p=9/16.



Site Percolation Theory

n Mean cluster size: σ4(p) = (1+2+2+4)/4 = 9/4
n The critical probability or percolation threshold pc is 

defined in terms of

by



n That is, the critical probability is the unique value of p for 
which an �-cluster appears in the infinite square lattice

n The case of one dimension is of no interest since the �-
cluster only occurs when p=1

n For site-percolation models on the square lattice there are 
rigorous bounds (but no closed-form expressions):

0.556 < pc < 0.679492

and calculations indicate that pc = 0.5928

Site Percolation Theory



Let c2(n,p) denote the mean maximum cluster size for the n x 
n two-dimensional lattice. Asymptotic estimates 

Site Percolation Theory

where S = 91/48 = 1.896... is called the scaling 
exponent. That S < 2 implies that the maximum cluster 
at the percolation threshold is a fractal.



n Forest fires: the forest is modeled by a square lattice, 
where a tree on fire will ignite its nearest neighbor in a 
cluster. How long does the fire last? For small or large 
values of p, that is, above and below pc, not long: the 
maximum duration of the fire occurs when p = pc.

n Epidemics in orchards: similar to above, with probability p
that a healthy tree will be infected by a neighboring 
blighted tree, where p is known as a function of distance. 
Lattice spacing that prevents an epidemic: p < pc.

Site Percolation Theory: Applications



n Ferromagnetism: magnetization of a metal is measured in 
terms of oscillations in an applied external field. The 
temperature of the metal is increased from 0 to T, then 
decreased to 0. If T is sufficiently large the metal retains no 
magnetization whereas if T is lower than the critical 
temperature Tc the metal keeps some of its induced 
magnetization. 

n Other: Polymerization, Productivity of oil fields, Extreme 
market share (0 or 100%) in the media industry, Wafer-
scale integration in the manufacture of microchips

Site Percolation Theory: Applications



n Hypothesis: a normal-tissue complication occurs when 
there are sufficiently large aggregates of adjacent sterilized 
FSUs. Different volumes (areas, lengths) of irradiated 
tissue are modeled by lattices of correspondingly different 
sizes.  The critical feature is mean maximal cluster size.

n Differences: cluster models vs. percolation models
– Emphasis on max. cluster size in finite lattices, not 

mean cluster size in infinite lattices
– One-dimensional cluster models are nontrivial
– More highly compact clusters (that result from 

increasing the local connectivity) are used in the 
modeling

Cluster models of dose-volume effects



Dose-dependent density d of sterilized FSUs:

Cluster models of dose-volume effects

dAdditional parameters: n (size) and t
(complication threshold)

Consequences of random radiation-induced cell 
killing:

(1) The number of sterilized FSUs is binomially 
distributed about the mean e.g. n2 d

(2) The location of sterilized FSUs is randomly 
distributed throughout the irradiated volume 
(area,length)



Cluster models of dose-volume effects



One-dimensional models
n Maximum cluster size = length of longest uninterrupted 

string of black intervals
n Percolation threshold occurs at pc = 1
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One-dimensional models
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One-dimensional models
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One-dimensional models
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Two-dimensional models: 1-connectivity
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Two-dimensional models: 1-connectivity
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Two-dimensional models: 1-connectivity
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Two-dimensional models: 2-connectivity
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Two-dimensional models: 2-connectivity
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Two-dimensional models: 3-connectivity
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Two-dimensional models: 3-connectivity

1

10

100

1000

104

105

0.2 0.4 0.6 0.8 1

M
ea

n 
S

iz
e 

of
 L

ar
ge

st
 C

lu
st

er

Density

Two Dimensions
(3-connectivity)

n = 350
       200
       100
         50
         25

4x104



Model Validation

n “Grid Therapy”
n Differences in maximum cluster size for different dose 

distributions with identical DVHs
n Existence of a “percolation dose”



Grid Therapy

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.



Dose-volume histogram





Different Cluster Distributions Arise from Same DVH



d2 Dose 
Distribution 0.5 0.6 0.7 0.8 

 

27.7 56.7 178 3160 

 

27.6 57.3 176 2290 

 

27.1 54.7 161 1190 

 

Different Cluster Distributions Arise from Same DVH: Mean 
Size of Largest Cluster (d1=0.1)



Percolation dose

Asymptotic dependence of c2(n,d) on n:

where pc=0.5928 for the 2-lattice (1-connectivity).

How rapidly does NTCP change when the irradiated 
area n2 is increased at constant dose (density)? 
Assuming a continuous sigmoidal form near the 
threshold t...



Percolation dose



Conjecture

There is a “percolation dose” Dp defined by

such that for D < Dp  NTCP is a weak function of area 
irradiated, whereas for D > Dp  NTCP is a very strong 
function of area irradiated



Two-dimensional models: 1-connectivity
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Conclusions

n The increasing conformality of external-beam radiotherapy 
treatments, realized by new technologies like IMRT, will 
result in increasing heterogeneity of dose distributions to 
normal tissues, and DVHs may not contain enough 
information to describe NTCP accurately

n Cluster models, a finite realization of percolation models, 
offer an alternative approach based on the complete 3-D 
dose distribution matrix

n Cluster models await validation from clinical data



What’s needed...

n Cancer research: prospective dose-escalation studies of 
normal-tissue complications (comparable to RTOG 96-01 
for rectal toxicity after EBRT for prostate ca)

n Applied mathematics: asymptotics for 2- and 3-D lattices 
with 2-connectivity at below-percolation densities
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