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Clinical data

Phase 1 clinical trial treating patients with rectal
cancer

Day 0: Anti-VEGF antibody (bevacizumab)
Smg/kg
Day 3: blood sample-circulating EPCs

Day 12: sigmoidoscopy, biopsy, functional CT,
PET

Day 14: 5 fluorouracil + radiation
Day 100: surgery
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Anti-VEGF treatment decreases
blood flow and blood volume
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Tumor regression in response
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Circulating endothelial cells
decrease after anti-VEGF
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Clinical data

Phase 1 clinical trial treating patients with rectal
cancer

Day 0: Anti-VEGF antibody (bevacizumab)
Smg/kg

Day 3: blood sample-circulating EPCs

Day 12: sigmoidoscopy, biopsy, functional CT,
PET

Day 14: 5 fluorouracil + radiation

Day 100: surgery
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Local Contribution vessel
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Systemic Contribution

Goal

Quantify the relative contributions of
endothelial and endothelial progenitor
cells to angiogenesis.

Local and systemic contributions to
angiogenesis are described by a tumor
growth and angiogenesis model and a
physiologically-based cell biodistribution
model, respectively




Background

e Tumors are dependent upon neovascularization to emerge
from dormancy and grow; angiogenic phenotype is

dependent on balance between stimulators and inhibitors
(Hanahan and Folkman, 1996; Holmgren, et al. 1995)

Certain primary tumors are able to suppress the growth of

metastases through production of angiogenesis inhibitors
(O’Reilly et al. 1994)

Tumors frequently exhibit regions of
necrosis amidst neovascularization in

regions where blood flow is inadequate
(Endrich et al. 1979)

Primary tumor affects secondary growth

Excise primary tumor

Primary tumor

Secondary tumor




Anti-angiogenic factors

Angiogenic factors

®

Half lives: Angiogenic<<Anti-angiogenic

Model Equations

Assumptions, constraints:
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Angiogenic activity varies within the tumor
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giogenic activity varies with tumor size
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Increasing distance from primary results
in more inhibition
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Ramanujan et al., Cancer Research, 2000

Summary

® The formation of central necrosis may be mediated by the
imbalance between angiogenesis stimulators and inhibitors

® Highest angiogenesis stimulation occurs near the tumor periphery
and in the peri-tumor normal tissue consistent with observations

Proliferation and
migration of local ECs
&:> circulating EPCs




SCHEMATIC OF PHYSIOLOGICALLY-
BASED PHARMACOKINETIC MODEL
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Angiogenic activity is highest at
tumor periphery

Tumor border, Tumor border,
t=11.6 days t=28.5 days

Tumor Tumor border,
center t=22.4 days
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Vascular density reflects
angiogenic activity
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EPC contribution is small...

R¢= 1.0 mm (t= 22.4 days)
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Anti-VEGF treatment affects systemic and
local angiogenic pathways

Vascular density [nm®v_e(mm®v )]
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Growth delay predictions for various
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Blood fluid dynamics and leukocyte adhesion
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RBCs enhance leukocyte-
endothelium interactions
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Approaches to the description of a fluid

macroscopic microscopic

ensemble
averaging
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-mass balance . dynamics:
equation IC -Boltzmann

-Navier-Stokes equation

Continuum
mechanics:

Lattice Boltzmann

Advantages of the Lattice-Boltzmann approach

accommodates complex geometries
adaptable to two-phase flow
applicable to particle suspensions

can include diffusion, reaction, precipitation &
phase transitions

handles moving boundaries (e.g. cell
deformation, vessel elasticity)

easily parallelized and scaled-up
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Modeling complex fluid dynamics: Lattice Boltzmann

Exa, Inc.

The Lattice Boltzmann model

E(x+¢;,t+1)=F(%,0+Q;(F(%1))
|

Collision

Propagation

Collision Propagation Bounce-
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Change in velocity Packets of fluid move from site to sif\?o
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boundary
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conditions

are conserved
t—t+1

17



Suspensions of Solid Objects

Solution by numerical integration using F

Leukocyte - RBC Dynamics

RBCs (affected by hydrodynamic forces only):

Leukocyte dynamics (hydrodynamic forces, ligand forces,
colloidal forces):

1O
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Modeling Receptor-Ligand Interactions
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Case A: roIIing WBC D=20um; Re=0.08; Wall shear rate=150s"!
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Migliorini et al., Biophys. J., 2002

Case B: head-on collision D=20um; Re=0.08; Wall shear rate=150s"!
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Case C: glancing collision - Height

Migliorini et al., Biophys. J., 2002
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NO RBCS 10.2%23um expansion

WSR=588 #»118s""
Elapsed time: 0.672s
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WBCs in capillaries
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3 RBCS Sma” 10.2%23pum expansion

WSR=588 »118s"
expansion Elapsed time: 1.12s
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4 RBCS same 10.2%25um expansion
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10.2%26um expansion
WSR=588 »88s
Elapsed time: 1.064s
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3D reconstruction of normal vasculature

Brown et al. Nature Medicine (2001)
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3D reconstruction of tumor vasculature

Brown et al. Nature Medicine (2001)
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25 stress levels differ from
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Conclusions

Model allows estimation of the normal & tangential
forces and torque on leukocytes rolling in physiologic
flow fields and geometries

Normal force fluctuations due to RBC collisions can
enhance leukocyte adhesion

Tangential force and torque due to RBCs can encourage
leukocyte rolling

All forces are sensitive to the orientation of collision (and
therefore hematocrit and geometry)
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Cell volume [pm3]
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suspension 0.5% agarose

Integrative
Pathophysiology:

Mathematical modeling
in Cancer
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Tumor radius (mm)
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3D reconstruction of normal vasculature

Brown et al. Nature Medicine (2001)
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3D reconstruction of tumor vasculature

Brown et al. Nature Medicine (2001)
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